Assessment of Fecal Pollution and Bacterial Community Structure in Restored Section of Cheonggyecheon Stream

청계천 복원구간 내 분변오염도 평가와 미생물 군집 연구

  • Park, Youngbin (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Lee, Heetae (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Kim, Seiyoon (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Ko, GwangPyo (Department of Environmental Health, School of Public Health, Seoul National University)
  • 박영빈 (서울대학교 보건대학원 환경보건학과) ;
  • 이희태 (서울대학교 보건대학원 환경보건학과) ;
  • 김세윤 (서울대학교 보건대학원 환경보건학과) ;
  • 고광표 (서울대학교 보건대학원 환경보건학과)
  • Received : 2008.06.17
  • Accepted : 2008.11.10
  • Published : 2009.01.30

Abstract

In 2005, the 5.84-Km length of Cheonggyecheon stream, previously covered with concrete road, was uncovered in the middle of Seoul, Korea. We investigated microbial water quality in various sites in Cheonggyecheon stream. We took water samples on three different days. The sampling sites included inflow water from upper stream (Mojeongyo), midstream (Ogansugyo), and downstream (Muhakgyo). Fecal pollution indicator microorganisms were measured by both IDEXX $Colilert^{(R)}$ and $Enterolert^{(R)}$. Microbial community from these sampling sites was also characterized based on 16S rRNA gene sequences. The average concentrations of total coliform are 5 CFU/100 mL, 1474 CFU/100 mL, and 1776 CFU/100 mL at Mojeongyo, Ogansugyo, and Muhakgyo, respectively. The average concentrations of fecal coliform were 28 CFU/100 mL, 47 CFU/100 mL in Ogansugyo, and Muhakgyo, respectively. The concentrations of other fecal indicator microorganisms including E. coli and Enterococcus sp. increased in downstream. When we characterized the microbial community, unique microbial community were discovered at different sampling sites. This study suggests that Cheonggyechoen stream is likely affected by non-point fecal sources and has unique microbial environment as the river flows downstream.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. 기상청(2007). http://www.kma.go.kr
  2. 김명, 전은형, 안태영(2003). 삽교호의 세균 다양성과 계통분류학적 분석. 한국미생물학회지, 39(4), pp. 272-276
  3. 물환경정보시스템(2007). http://water.nier.go.kr
  4. 박지은, 김선덕, 조주래, 김상현, 이혜진, 이영옥(2006a). 지표수에서의 분변오염지표세균(대장균군) 검출방법의 연구. 수질보전 한국물환경학회지, 22(6), pp. 1052-1059
  5. 박지은, 여상민, 이영옥(2006b). FISH법으로 분석한 주암호의 세균군집구조. 한국육수학회지, 39(2), pp. 219-225
  6. 정현미, 오상헌, 박정환(2003). 상수원에서 바이러스와 분변오염지표세균의 계절변동. 수질보전 한국물환경학회지, 19(3), pp. 329-338
  7. 청계천(2007). http://cheonggye.seoul.go.kr
  8. 최지용, 신은성(1997). 도시지역 비점오염원 관리방안 연구. 한국환경정책평가연구원 연구보고서, 2, pp. 27-56
  9. 한국수자원공사(2006). 환경정책기본법시행령
  10. 한석균, 이일규, 안태영(1998). 16S rRNA 유전자 계통분석에 의한 한강수계의 세균 다양성. 한국미생물학회지, 34(4), pp. 194-199
  11. 환경부(2002). 먹는물수질공정시험법
  12. 환경부(2007). 제2007 - 147호 수질오염공정시험방법
  13. Cabelli, V. J. (1983). Microbial indicator systems for assessing water quality. Antonie van Leeuwenhoek, 48(6), pp. 613-618 https://doi.org/10.1007/BF00399546
  14. Chakravorty, S., Helb, D., Burday, M., Connell, N., and Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods, 69(2), pp. 330-339 https://doi.org/10.1016/j.mimet.2007.02.005
  15. Clark, D. L., Milner, B. B., Stewart, M. H., Wolfe, R. L., and Olson, B. H. (1991). Comparative study of commercial 4-methylumbelliferyl-beta-D-glucuronide preparations with the standard methods membrane filtration fecal coliform test for the detection of Escherichia coli in water samples. Appl. Environ. Microbiol., 57(5), pp. 1528-1534
  16. Clark, J. A. and El-Shaarawi, A. H. (1993). Evaluation of commercial presence-absence test kits for detection of total coliforms, Escherichia coli, and other indicator bacteria. Appl. Environ. Microbiol., 59(2), pp. 380-388
  17. Eichler, S., Christen, R., Holtje, C., Westphal, P., Botel, J., Brettar, I., Mehling, A., and Hofle, M. G. (2006). Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl. Environ. Microbiol., 72(3), pp. 1858-1872 https://doi.org/10.1128/AEM.72.3.1858-1872.2006
  18. Glockner, F. O., Fuchs, B. M., and Amann, R. (1999). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol., 65(8), pp. 3721-3726
  19. Ishizaki, K., Shinriki, N., and Matsuyama, H. (1986). Inactivation of Bacillus spores by gaseous ozone. J. Appl. Microbiol., 60(1), pp. 67-72 https://doi.org/10.1111/j.1365-2672.1986.tb01067.x
  20. Jill, E. Clarridge 3rd (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. J. Clin. Microbiol. Rev., 17(4), pp. 840-862 https://doi.org/10.1128/CMR.17.4.840-862.2004
  21. Maier, R. M., Pepper, I. L., and Gerba, C. P. (2000). Environmental microbiology. Academic Press, San Diego, U.S.A
  22. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., Dymock, D., and Wade, W. G. (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol., 64(2), pp. 795-799
  23. Paerl, H. W., Dyble, J., Moisander, P. H., Noble, R. T., Piehler, M. F., Pinckney, J. L., Steppe, T. F., Twomey, L., and Valdes, L. M. (2003). Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol. Ecol., 46, pp. 233-246 https://doi.org/10.1016/S0168-6496(03)00200-9
  24. Park, S. J., Lee, E. J., Lee, D. H., Lee, S. H., and Kim, S. J. (1995). Spectrofluorometric assay for rapid detection of total and fecal coliforms from surface water. Appl. Environ. Microbiol., 61(5), pp. 2027-2029
  25. Riffon, R., Sayasith, K., Khalil, H., Dubreuil, P., Drolet, M., and Lagace, J. (2001). Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J. Clin. Microbiol., 39(7), pp. 2584-2589 https://doi.org/10.1128/JCM.39.7.2584-2589.2001
  26. Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4), pp. 406-425
  27. U.S EPA (2005). Microbial source tracking guide document
  28. Van de Peer, Y., Chapelle, S., and De Wachter, R. (1996). A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic. Acids Res., 24, pp. 3381-3391 https://doi.org/10.1093/nar/24.17.3381
  29. Wagner, M., Amann, R., Lemmer, H., and Schleifer, K. H., (1993). Probing activated sludge with oligonucleotides specific for Proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol., 59(5), pp. 1520-1525
  30. Weinbauer, M. G., Fritz, I., Dirk, F., Wenderoth, D. F., and Hofle, M. G. (2002). Simultaneous extraction from bacterioplankton of Total RNA and DNA suitable for quantitative structure and function analyses. Appl. Environ. Microbiol., 68(3), pp. 1082-1087 https://doi.org/10.1128/AEM.68.3.1082-1087.2002
  31. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173(2), pp. 697-703