DOI QR코드

DOI QR Code

Hydrogen Yields and Microbial Community Impacts of Changes in Carbohydrate Concentration during Hydrogen Fermentation of Food Wastes

음식물류 폐기물의 수소발효시 탄수화물 농도변화에 따른 수소전환율 및 미생물군집 영향

  • Kyung min Cho (Department of Environmental Health, Daejeon Health Institute University) ;
  • Hye sook Park (Department of Environmental Health, Daejeon Health Institute University)
  • Received : 2023.12.19
  • Accepted : 2023.12.29
  • Published : 2024.03.25

Abstract

This study analyzed the hydrogen conversion rate and microbial community in conjunction with changes in carbohydrate concentration during hydrogen fermentation using food waste, and presented comprehensive research results for the condition 80 g Carbo COD/L, which showed the highest efficiency with a carbohydrate removal rate of 98.1% and a hydrogen conversion rate of 1.76 mol H2/mol. The microbial community analysis found that Clostridium sp., widely known as a hydrogen-producing microorganism, was released in 80 g Carbo COD/L and confirmed that it was a dominant species at 98.1%. Conversely, in 100 g Carbo. Under COD/L conditions, Leuconostoc sp. showed the maximun prevalence, which is believed to hinder hydrogen production.

Keywords

Acknowledgement

이 논문은 2022학년도 대전보건대학교 교내연구비의 지원에 의한 논문임.

References

  1. Lee, J.H., 2021, "Analysing the acceptability of Jeonju-Wanju hydrogen demonstration city", New. Renew. Energy, 17(4), 28-35. https://doi.org/10.7849/ksnre.2021.0026
  2. Kapdan, I.K., and Kargi, F., 2006, "Bio-hydrogen production from waste materials", Enzyme and Microbial Technology, 38(5), 569-582. https://doi.org/10.1016/j.enzmictec.2005.09.015
  3. Armor, J.N., 1999, "The multiple roles for catalysis in the production of H2", Applied Catalysis A: General, 176(2), 159-176. https://doi.org/10.1016/S0926-860X(98)00244-0
  4. Hallenbeck, P.C., and Benemann, J.R., 2002, "Biological hydrogen production; fundamentals and limiting processes", Int. J. Hydrog. Energy, 27(11-12), 1185-1193. https://doi.org/10.1016/S0360-3199(02)00131-3
  5. Eshtiaghi, N., Markis, F., Yap, S.D., Baudez, J.C., and Slatter, P., 2013, "Rheological characterisation of municipal sludge: A review", Water Res., 47(15), 5493-5510. https://doi.org/10.1016/j.watres.2013.07.001
  6. Karthikeyan, O.P., Trably, E., Mehariya, S., Bernet, N., Wong, J.W.C., and Carrere, H., 2018, "Pretreatment of food waste for methane and hydrogen recovery: A review", Bioresour. Technol., 249, 1025-1039. https://doi.org/10.1016/j.biortech.2017.09.105
  7. Noike, T., Takabatake, H., Mizuno, O., and Ohba, M., 2002, "Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria", Int. J. Hydrog. Energy, 27(11-12), 1367-1371. https://doi.org/10.1016/S0360-3199(02)00120-9
  8. Bahl, H., Andersch, W., Braun, K., and Gottschalk, G. 1982, "Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutyricum grown in continuous culture", Eur. J. Appl. Microbiol., 14, 17-20. https://doi.org/10.1007/BF00507998
  9. Lay, J.J., Lee, Y.J., and Noike, T., 1999, "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Res., 33(11), 2579-2586. https://doi.org/10.1016/S0043-1354(98)00483-7
  10. Chen, C.C., Lin, C.Y., and Lin, M.C., 2002, "Acid-base enrichment enhances anaerobic hydrogen production process", Appl. Microbiol. Biotechnol., 58(2), 224-228. https://doi.org/10.1007/s002530100814
  11. Khanal, S.K., Chen, W.H., Li, L., and Sung, S., 2004, "Biological hydrogen production: effects of pH and intermediate products", Int. J. Hydrog. Energy, 29(11), 1123-1131.