• 제목/요약/키워드: Microbeam

검색결과 57건 처리시간 0.026초

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Interpretation of the Chemical Transformation of Individual Asian Dust Particles Collected on the Western Coast of Korean Peninsula

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권1호
    • /
    • pp.14-22
    • /
    • 2012
  • This paper is focused on the comprehensive and detailed interpretation for the chemical transformation of individual Asian dust (hereafter called "AD") particles during long-range transport from source regions to receptor area. A multi-stage particle sampler was operated at a ground-based site in Taean, Korea directly exposed to the outflow of air masses from China during AD period in April 2003. Both quantitative and qualitative analyses for size-classified individual particles were carried out by a microbeam X-ray fluorescence (XRF) method and a microbeam Particle Induced X-ray Emission (micro-PIXE), respectively. Among major characteristic elements, the elemental masses of soil derived components, sulfur, and chloride varied as a function of particle size showing the monomodal maximum with a steeply increasing at 3.3-4.7 ${\mu}m$ particle size. Although the details on chemical composition of AD particle collected on a straight line from source area to our ground-based site are needed, a large amount of Cl coexisted in and/or on AD particles suggests that AD particles collected in the present study might be actively engaged in chemical transformation by sea-salt and other Cl containing pollutants emitted from the China's domestic sources. Through the statistical analyses it was possible to classify individual AD particles into six distinct groups. The internally mixed AD particles with Cl, which has various sources (e.g., sea-salt, coal combustion origin HCl, gaseous HCl derived from the adsorption of acids to sea-salt, and Cl containing man-made particles) were thoroughly fractionated by the elemental spectra drivened by the double detector system of micro-PIXE.

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

Micro-PIXE as a Technique for Multi-elemental Detection and Localization in Various Atmospheric Environmental Samples

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.54-62
    • /
    • 2008
  • Microbeam PIXE, often called micro-PIXE, is one of powerful tools for analyzing a wide range of elements for various samples. Moreover, it has important applications of interest to the atmospheric science. In the present study, a qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Especially, in combination with a novel individual droplet collection method and the micro-PIXE analytical technique, the chemical specification of various individual atmospheric samples could be carried out. Here, we briefly introduce the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements for various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV $H^+$ micro beam ($1{\sim}2{\mu}m$) accelerated by 3 MeV single-end accelerator.

A SOLUTION TO THE PROBLEM WITH ABSORBED DOSE

  • Braby, Leslie A.
    • Nuclear Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.533-538
    • /
    • 2008
  • In some situations, for example at very low doses, in microbeam irradiation experiments, or around high energy heavy ion tracks, use of the absorbed dose to describe the energy transferred to the irradiated target can be misleading. Since absorbed dose is the expected value of energy per mass it takes into account all of the targets which do not have any energy deposition. In many situations that results in numerical values, in Joules per kg, which are much less than the energy deposited in targets that have been crossed by a charged particle track. This can lead to confusion about the biochemical processes that lead to the consequences of irradiation. There are a few alternative approaches to describing radiation that avoid this potential confusion. Examples of specific situations that can lead to confusion are given. It is concluded that using the particle radiance spectrum and the exposure time, instead of absorbed dose, to describe these irradiations minimizes the potential for confusion about the actual nature of the energy deposition.

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

Numerical characterizations of a piezoelectric micromotor using topology optimization design

  • Olyaie, M. Sadeghbeigi;Razfar, M.R.
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.241-259
    • /
    • 2013
  • This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.

X-ray Microdiffraction 을 이용한 구리 Interconnect의 Texture 분석 (Texture Analysis of Cu Interconnects Using X-ray Microdiffraction)

  • 정진석
    • 한국결정학회지
    • /
    • 제12권4호
    • /
    • pp.233-238
    • /
    • 2001
  • 1㎛ 이하로 집속된 방사광원으로부터의 x-선을 이용하여 새로운 분석법인 x-선 미세회절(x-ray microdiffraction)을 사용하면 다결정시료 내 grain들의 방위나 strain의 국지적 분포를 정밀하게 측정할 수 있다. 포항가속기연구소 방사광원의 x-ray microbeam 실험 장치를 사용하여 찍은 Laue 사진을 측별히 쓰여진 분석 software를 이용하여 분석함으로써 고집적회로에 쓰이는것과 같은 방법으로 제작된 Si wafer 상의 다른 선폭의 구리 도선들이 가지는 texture 를 밝혀내었다. 실험시 x-ray빔의 크기는 2×3㎛²정도이었으며, 분석 결과에의하면 선폭 1㎛도선에서는 grain들이 방위가 특정한 방향성이 없는 반면, 선폭 20㎛도선의 중앙부분에서는 〈111〉fiber texture 가 관측되었다. Grain들의 크기는 선폭 1㎛의도선에서 2∼5㎛, 선폭 20㎛의도선에서는 6∼8㎛로 측정되었다.

  • PDF

Oscillation of Microbeam Structure with Irregular Mass Distribution

  • Kang, Seok-Joo;Kim, Jung-Hwan;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.528-532
    • /
    • 2013
  • 본 연구에서는, 해석적 모델로 불규칙하게 분포된 질량을 가진 열탄성 댐핑을 포함하는 마이크로빔 구조물을 연구하였다. 마이크로 스케일의 기계적 공명체(mechanical resonator)에 대한 열탄성 댐핑의 중요성은 높은 Q-factor를 설계하는데 고려된다. 본 연구에서의 빔 모델은 Euler-Bernoulli 빔 이론을 기조로 한다. 빔의 고유 진동수를 결정하기 위하여, 에너지 기법이 적용되었다. 또한, 열탄성 댐핑 효과는 열전도 방정식을 사용할으로써 고려되었고, Q-factor가 결정될 수 있었다. 운동방정식의 유도에는 체계적인 무차원화를 수행하였다. 임의의 집중된 질량을 포함하는 열탄성 댐핑을 가진 마이크로빔에 대해 모델의 결과값을 입증하였고 mode shape과 Q-factor를 제시하였다.

  • PDF