Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.6.805

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets  

Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Navi, Borhan Rousta (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Steel and Composite Structures / v.41, no.6, 2021 , pp. 805-820 More about this Journal
Abstract
In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.
Keywords
buckling; vibration; micro-actuator, microsensor; porous polymeric piezoelectric nanocomposite sandwich microbeam; sinusoidal and higher order shear deformation theories; surface stress effects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tung, H.V. (2015), "Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties", Compos. Struct, 131, 1028-1039. https://doi.org/10.15625/0866-7136/38/1/7036.   DOI
2 Wang, G.F. and Feng, X.Q., (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Let., 90, 229-231. https://doi.org/10.1063/1.2746950.   DOI
3 Wang, Y., Ren, H., Fu, T. and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory", Acta. Astron., 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036.   DOI
4 Wang, Y., Xie, K., Shi, C. and Fu, T. (2019), "Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments", Mater. Res. Express., 6, 085615.   DOI
5 Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B, 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.   DOI
6 Jalali, S.K. and Heshmati, M. (2016), "Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets", Thin-Wall. Struct., 100, 14-24. https://doi.org/10.1016/j.tws.2015.12.001.   DOI
7 Jiang, L., Feng, Y., Zhou, W. and He B. (2018), "Analysis on natural vibration characteristics of steel-concrete composite truss beam", Steel Compos. Struct., 26(1), 79-87. http://dx.doi.org/10.12989/scs.2018.26.1.079.   DOI
8 Jin, G., Yang, C. and Liu, Z. (2016), "Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory", Compos. Struct., 140, 390-409. https://doi.org/10.1016/j.compstruct.2016.01.017.   DOI
9 Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64, 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.   DOI
10 Phan, C.N., Kardomateas, G.A. and Frostig, Y. (2012), "Global buckling of sandwich beams based on the extended high-order theory", A.I.A.A. J., 50(8), 1707-1716. https://doi.org/10.2514/1.J051454.   DOI
11 Shen, W., Luo, B., Yan, R., Zeng, H. and Xu, L. (2017), "The mechanical behavior of sandwich composite joints for ship structures", Ocean Eng., 144, 78-89 . https://doi.org/10.1016/j.oceaneng.2017.08.039.   DOI
12 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.   DOI
13 Arefi, M. and Zenkour A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. http://dx.doi.org/10.12989/scs.2018.26.4.421.   DOI
14 Aslund, P.E., Hagglund, R., Carlsson, L.A. and P. Isaksson, (2014), "Modeling of global and local buckling of corrugated board panels loaded in edge-to-edge compression", J. Sandwich Struct. Mater., 16(3), 272-292. https://doi.org/10.1177/1099636213519374.   DOI
15 Ferdous, W., Manalo, A., Aravinthan, T. and Fan, A. (2018), "Flexural and shear behaviour of layered sandwich beams", Constuct. Build. Mater., 173, 429-442. https://doi.org/10.1016/j.conbuildmat.2018.04.068.   DOI
16 Kumar, R.S. and Ray, M.C. (2016), "Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1-3 piezoelectric composites", Mech. Advan. Mater. Struct., 23(6), 652-669. https://doi.org/10.1080/15376494.2015.1028692.   DOI
17 Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets", Compos. Struct., 113(1), 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007.   DOI
18 Mirzaei, M. and Kiani, Y. (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. https://doi.org/10.1016/j.compstruct.2015.09.003.   DOI
19 Mirzaei, M. and Kiani, Y. (2016), "Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", Acta Mech., 227(7), 1869-1884. https://doi.org/10.1007/s00707-016-1593-6.   DOI
20 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007.   DOI
21 Magnucka-Blandzi, E., Walczak, Z., Jasion, P. and Wittenbeck, L. (2017), "Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores - the lengthwise corrugated main core", Thin-Wall. Struct., 112, 78-82. https://doi.org/10.1016/j.tws.2016.12.013.   DOI
22 Frostig, Y., Phan, C. and Kardomateas, G. (2013), "Free vibration of unidirectional sandwich panels, Part I: compressible core", J. Sandwich Struct. Mater., 15(4), 377-411. https://doi.org/10.1177/1099636213485518.   DOI
23 Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2016), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc IMechE Part C: J. Mech. Eng. Sci., 203, 231-251. https://doi.org/10.1177/0954406216653622.   DOI
24 Mohammadimehr, M.M., Mehrabi, M., Mousavinejad, F.S. (2020), "Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature method", J. Vib. Control., 27(15-16), 1842-1859. https://doi.org/10.1177/1077546320949083.   DOI
25 Ghorbanpour Arani, A., Haghparast E. and BabaAkbar Zarei, H. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., 57. https://doi.org/105-126. 10.12989/sem.2016.57.1.105.   DOI
26 D'Ottavio, M., Ji, O.W.P. and Waas, A.M. (2016), "Benchmark solutions and assessment of variable kinematics models for global and local buckling of sandwich struts", Compos. Struct., 156, 125-134. https://doi.org/10.1016/j.compstruct.2016.01.019.   DOI
27 Hwu, C., Hsu, H.W. and Lin, Y.H. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", Compos. Struct., 171, 528-537. https://doi.org/10.1016/j.compstruct.2017.03.042.   DOI
28 Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. (2013), "Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories", Compos. Struct., 106, 777-792. https://doi.org/10.1016/j.compstruct.2013.07.019.   DOI
29 Javani, R., Rabani Bidgoli M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. http://dx.doi.org/10.12989/scs.2019.31.4.419.   DOI
30 Lurie, S.A., Solyaev, Y.O., Volkov-Bogorodskiy, D.B., Bouznik, V.M. and Koshurina, A.A. (2017), "Design of the corrugated-core sandwich panel for the arctic rescue vehicle", Compos. Struct., 160, 1007-1019. https://doi.org/10.1016/j.compstruct.2016.10.123.   DOI
31 MalekzadehFard, K., Gholami, M., Reshadi, F. and livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandwich Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034.   DOI
32 Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of sandwich plate-reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation metho", J. Vib. Control., 27(15-16), 1736-1752. https://doi.org/10.1177/1077546320948330.   DOI
33 Nejadi, M.M., Mohammadimehr, M., Mehrabi, M. (2021), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flo", Alex. Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042   DOI
34 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.   DOI
35 Arunkumar, M.P., Pitchaimani, J., Gangadharan, K.V. and Lenin Babu. M.C. (2017), "Sound transmission loss characteristics of sandwich aircraft panels: influence of nature of core", J. Sandwich Struct. Mater., 19(1), 26-48 . https://doi.org/10.1177/1099636216652580.   DOI
36 Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Walled Struct., 107, 39. https://doi.org/10.1016/j.tws.2016.05.025.   DOI
37 Chen, Q., Linghu, T., Gao, Y., Wang, Z., Liu, Y., Du, R. and Zhao, G. (2017), "Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing", Compos. Sci. Technol., 144, 202-207. https://doi.org/10.1016/j.compscitech.2017.03.033.   DOI
38 Nguyen, C.H., Butukuri, R.R., Chandrashekhara, K. and Birman, V. (2011), "Dynamics and buckling of sandwich panels with stepped facings", Int. J. Struct. Stab. Dyn., 11(4), 697-716. https://doi.org/10.1142/S0219455411004300.   DOI
39 Pascual, C., Montali, J. and Overend, M., (2017), "Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications", Compos. Struct., 560, 560-573. https://doi.org/10.1016/j.compstruct.2016.10.059.   DOI
40 Nguyen, T.K., Nguyen, T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B, 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.   DOI
41 Noh, M.S., Kim, S., Hwang, D.K. and Kang, C.Y. (2017), "Self-powered flexible touch sensors based on PZT thin films using laser lift-off", Sens. Actuator Phys., 261, 288-294. https://doi.org/10.1016/j.sna.2017.04.046.   DOI
42 Romaszko, M., Sapinski, B. and Snamina, J. (2018), "Complex vibration modes in magnetorheological fluid - based sandwich beams", Compos. Struct., 204, 475-486. https://doi.org/10.1016/j.compstruct.2018.07.062.   DOI
43 Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.   DOI
44 Sharaf, T. and Fam, A. (2012), "Numerical modelling of sandwich panels with soft core and different rib configuration", J. Reinforce. Plastic. Compos., 31(11), 771-784. https://doi.org/10.1177/0731684412445494.   DOI
45 Ghorbanpour Arani, A., BabaAkbar Zarei H. and Haghparast, E. (2016), "Application of Halpin-Tsai method in modelling and sizedependent vibration analysis of CNTs/fiber/polymer composite microplates", J. Comput. Appl. Mech., 47, 45-52. https://doi.org/10.22059/jcamech.2016.59254.   DOI
46 Ebrahimi, F. and Jafari, A. (2016), "Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory", Advan. Mater. Res., 5(4), 279-298. https://doi.org/10.12989/amr.2016.5.4.279.   DOI
47 Filippi, M. and Carrera, E. (2016), "Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory", Compos. Part B, 98, 269-280 . https://doi.org/10.1016/j.compositesb.2016.04.050.   DOI
48 Frostig, Y. (2016), "Shear buckling of sandwich plates - incompressible and compressible cores", Compos. Part B, 96, 153- 172. https://doi.org/10.1016/j.compositesb.2016.04.037.   DOI
49 Damanpack, A.R., Khalilik, S.M.R. (2012), High- order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94, 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023.   DOI
50 Vidal, P. and Polit, O. (2010), "Vibration of multilayered beams using sinus finite elements with transverse normal stress", Compos. Struct., 92, 1524-1534. https://doi.org/10.1016/j.compstruct.2009.10.009.   DOI
51 Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.   DOI
52 Khaje Khabaz, M., Eftekhari, S.A., Hashemian, M., Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Physica A: Stat. Mech. Appl., 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.   DOI
53 Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Rabby, S. and Kazemi, M. (2018), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Cont., 24(18), 4211-4225. https://doi.org/10.1177/1077546317721871.   DOI
54 Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2017). "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandwich Struct. Mater., 2194-2218. https://doi.org/10.1177/1099636217743177.   DOI
55 Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill, Inc. New York, NY.
56 Goncalves, B.R., Karttunen, A., Romanoff, J. and Reddy, J.N. (2017), "Buckling and free vibration of shear-flexible sandwich beams using a couple stress- based finite element", Compos. Struct., 65, 233-241. https://doi.org/10.1016/j.compstruct.2017.01.033.   DOI
57 Suzuki, T., Aoki, T., Ogasawara, T. and Fujita, K. (2017), "Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission", Acta Astronaut., 136, 402-420. https://doi.org/10.1016/j.actaastro.2017.04.001.   DOI
58 Vescovini, R., D'Ottavio, M., Dozio, L. and Polit, O. (2017), "Thermal buckling response of laminated and sandwich plates using refined 2-D models", Compos. Struct., 176, 28. https://doi.org/10.1016/j.compstruct.2017.05.021.   DOI
59 Wang, Y., Fu, T. and Zhang, W. (2021), "An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis", Thin. Wall. Struct., 160, 107400. https://doi.org/10.1016/j.tws.2020.107400.   DOI
60 Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698, https://doi.org/10.12989/sem.2020.73.6.685.   DOI
61 Wang. Y. and Wu. D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aero. Space. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.   DOI
62 Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1-17. https://doi.org/10.1142/S0219455415400118.   DOI
63 Shawkat, W., Honickman, H. and Fam, A. (2008), "Investigation of a Novel Composite Cladding Wall Panel in Flexur", J. Compos. Mater., 42(3), 315-330. https://doi.org/10.1177/0021998307087965.   DOI
64 Zhang, Z., Han, B., Zhang, Q. and Jin, F. (2017), "Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid Cores", Compos. Struct., 171, 335-344. https://doi.org/10.1016/j.compstruct.2017.03.045.   DOI
65 Snigdha Tummala, V., Mian, A., Chamok, N.H., Poduval, D., Ali, M., Clifford, J. and Majumdar, P. (2017), "Three dimensional printed dielectric substrates for radio frequency applications", J. Electron. Packag., 139(2), https://doi.org/10.1115/1.4036384.   DOI
66 Yang, L., Fan, H., Liu, J., Ma, Y. and Zheng, Q. (2013), "Hybrid lattice-core sandwich composites designed for microwave absorption", Mater. Des., 50, 863-871. https://doi.org/10.1016/j.matdes.2013.03.032.   DOI
67 Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", Int J Solids Struct., 42, 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037.   DOI
68 Yang, Y., Pagani, A. and Carrera, E. (2017), "Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layer-wise theory", Compos. Struct., 175, 25-45. https://doi.org/10.1016/j.compstruct.2017.05.003.   DOI
69 Zhang, Y.H., Campbell, S.A., Zhang, L. and Karthikeyan, S. (2017), "Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology", Microsyst. Technol., 23(3), 739-743. https://doi.org/10.1007%2Fs00542-015-2737-7.   DOI
70 Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016), "Bending and free vibration analysis of MSGT microcomposte vReddy plate reinforced by FG-CNTs with temperature-dependent material properties under hydro-thermo-mechanical loading", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055.   DOI
71 Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2017), "Dynamic stability of MSGT sinusoidal viscoelastic piezoelectric polymeric FG-SWNT reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermoelectro-magneto-mechanical loadings", Mech. Advan. Mater. Struct., 24, 1-19. https://doi.org/10.1080/15376494.2016.1227507.   DOI
72 Mathieson, H., Fam, A. (2014), "High cycle fatigue under reversed bending of sandwich panels with GFRP skins and polyurethane foam core", Compos. Struct., 113, 31-39. https://doi.org/10.1016/j.compstruct.2014.02.027   DOI
73 Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. http://dx.doi.org/10.12989/scs.2018.26.2.125.   DOI
74 Li, D.H., Wang, R.P., Qian, R.L., Liu, Y. and Qing, G.H. (2016), "Static response and free vibration analysis of the composite sandwich structures with multi-layer cores", Int. J. Mech. Sci., 111, 101-115. https://doi.org/10.1016/j.ijmecsci.2016.04.002.   DOI
75 Xie, G., Zhang, R. and Manca, O. (2017), "Thermal and thermomechanical performances of pyramidal core sandwich panels under aerodynamic heating", J. Ther. Scie. Eng. Appl., 9(1), 1-9. https://doi.org/10.1115/1.4034914.   DOI