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Oscillation of Microbeam Structure with Irregular Mass Distribution

Seok-Joo Kang T, Jung-Hwan Kim* and Ji-Hwan Kim* *

Key Words : Euler-Bernoulli beam, thermoelastic damping, attached mass, Q-factor

ABSTRACT

In this study, an analytical model of micro-beam structure including thermoelastic damping with
irregularly distributed masses is investigated. The significance of thermoelastic damping for micro-scale
mechanical resonators is evaluated to design with high quality factor(Q-factor). The beam model of this
work is based on Euler-Bernoulli beam theory. In order to determine the natural frequency of the model,
energy method is applied. Also, the thermoelatic damping effects are considered by using heat conduction
equations, and the Q-factor can be determined. To derive the equation of motion, non-dimensionalization is
employed for systematic analysis. Results of the model are verified, and present mode shapes and Q-

factors for the micro-beam with thermoelastic damping including random point masses.
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1. Introduction

Sensitive devices such as resonators have been
developed for rate sensors, and requires high Quality
factors(Q-factors). The factor is defined as the ratio
of the total kinetic and potential energy of the system
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to dissipation that occurs due to various damping
mechanisms [1]. Now, it has been well known that
one of the most important energy loss factors is
thermoelastic damping in micro- and nano-structures.
Moreover, thermoelastic damping effect is one of the
most important factors to estimate the quality of the
resonators.

A number of studies on thermoelastic damping for
microstructures have been performed by Lifshitz and
Roukes [2] performed general research on
thermoelastic damping for the micro- and nano-
mechanical systems(MEMS and NEMS). Yi [3]
investigated the geometric effect on thermoelastic
damping in MEMS resonators. Wong et al. [4]
presented the damping of the in-plane vibration of
thin silicon ring.
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Practical point of view, imperfection of the
resonator may be inevitable. Thus, the structures
include the imperfection as point masses. Wu and Lin
[5] performed free vibration analysis of a uniform
cantilever beam with point masses. Dwivedy and Kar
[6] analyzed a natural frequency and combined
effects from internal resonance of slender beam with
an attached mass. Wu and Chen [7] studied bending
vibrations of wedge beams with any number of point
masses.

In this paper, Euler-Bernoulli beam including
attached masses is investigated. To obtain the natural
frequency of the beam, energy method is adopted.
This work is concerned with the determination of the
fundamental bending frequencies and effect of Q-
factors for a beam with point masses. Results of the
model are verified and present Q-factors for the
micro-beam with thermoelastic damping including
random point masses. As a beam model, the clamped-
clamped beam is used.

2. Formulations

Thermoelastic damping of a beam with random
point masses is considered to analyze the Q-factor of
the model. The model is a thin beam with rectangular
cross-section. Fig. 1. shows a model with attached

irregular point masses.
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Fig. 1. A model of beam with n attached point
masses 1.

2.1 Thermoelastic damping equation of motion

For beam theory, plane stresses o and strains &

relation by Hooke’s law are

xx

£ :iog,xwta&
ot

(1.a)

(1.b)
xy yz zx (1 .C)

In here,& ~and 6 are the functions of x and y.

Specifically, & and v denote the variation in

temperature from the ambient temperature and

Poisson’s ratio, respectively. And « is the linear

thermal-expansion coefficient.

For Euler-Bernoulli beam, the thermoelastic
equation of motion is given by Ref. [2] and
attached masses are adopted as [7]

i Y(x n, a Y(x 05

xX=x;)
p
;: (E] Yéxzt) +Eal,(x, ,)] -0 )
where
= ydydz and 1,(x)= [ y6(x,,0)dvdz .

In here, x is the axial coordinate, Y is the transverse

deflection, £ is Young’s modulus, o is the mass

density of material, 4 is the cross-sectional of the
beam and tis time. [ and [, are integrals over the
cross section of the beam giving the mechanical and
the thermal contributions to its moment of inertia.
And, m; denotes i th concentrated mass, and 5(x —x;)

is the Dirac delta function at x, .

(1+2A l+o j@@(x,y,t)

E1-20 ot
_ ., 00(x,»,0) n 77(6)’(}@1)) “)
X oy’ o o\ ox’

where X is the thermal diffusivity.
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2.2 Harmonic vibrations

To consider the effect of thermoelastic coupling on
the vibrations of a beam, equations (2) and (4) are to
solve. Kinetic energy T and strain energy V can be
written as

1 (oY(x,0Y
”A[ ) )

7| 2
T:L 1
l (aY:)(x t)j S(x—x)
2 i

1, (Yn) 1 (©)
2EJ[ > J 2Ea(](xt))}1

Y(x,7) and Bx,y,?) are assumed as Ref. [2]

~
Il
Sy

Y(x,0)=Y,(x)e”, O(x,y,t)=6,(x,y)e” 7
Substituting Eq. (7) into the heat equation (4) and
neglecting the term of order A, on its left-hand side.
Condition no flow of heat across the boundaries of
the beam such as % -0 at y=xb/2 . The
temperature profile across the beam is then given by

=52 T80 ®

where

S(y)= LG \/: =(1+1i) \/7
kcos(bk/z)

Substituting Eq. (3) into the Eq. (6), the equation
can be obtained as

g [FR@) 1 (nY ©)
V—2EI[ > J+2EAE[ ~ JLyS(y)dA

Adopting a clamped-clamped beam, boundary
conditions 1is Yo(x):wz(). Therefore, the natural
X
frequency relation can be obtained as

n m, 3 N
(1+;pA§(x xl.)]a)YO(x) (10)
)(’5 % (x)

:ﬂ(1+AEC ( )d

pA I b2

In order to perform systematic analysis, it is
convenient to transform the parameters to non-
dimensionalized form as below

X:i7 X::ﬁ= Y:l: M::ﬂ’ B*ié’ (11)
L L M B
c=¢, r=t, L |E o m
C L I\ pd pAL

Substituting the parameters of Eq. (11) into Eq.
(10), the equation is rewritten as

(1+in,5(X—X,)j @Y, (x) (12)

i=1

[HAc[» vs( )d]ay(x)

Eq. (12) can be rewritten as

[Hin,&(X—X,»)]wzx,(x) (13)

i=1

6Y(x)

=0’ {1+4, [1+f(a))]}

where the complex function flw) is given by
B bk bk
@)= ron= 3 -l |

In Eq. (13), because Young’s modulus £ is a
frequency-dependent, it is replaced by

E, :E{1+AE[1+f(a))]} (14)

The dispersion relation between w and g, for
the thermoelastic beam is given by
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I E,l 2
o= P 4
\ij[HZyM,S(XX,)J (15)

i=1

[ 144,14+ /()]
143 M S(X - X,)

i=1

- %

Using Taylor series, the dispersion relation
becomes

1+A75[1+f(a)0)] (16)

0 =0, n
14> uMS(X - X,)

i=1

From Eq. (16), the real and imaginary parts can be
extracted as

A, 6 sinhf—sin§j
1+*[1—77 (17.a)
Re(®) = o, 2 i & coshé +cosé
14> uM (X - X))
ﬁ(i sinh & +sin & _ij 17h)
Im(e) = o, 2 5ﬂcosh§+cos§ & :

1+ uMS(X - X))
i=1

where

@,
E=b |~
2y

The amount of thermoelastic damping is expressed
as inverse of the Q-factor.

0 _Ea’T, [i_i sinh§+sin§j (18)

C & & coshé+cosé
where

Im(w)
Re(w)

0'=2

3. Results and Discussion

In this chapter, the Q-factor of the model is verified and
numerical study is performed. Through the verification of
formulations, acceptable results can be confirmed.

3.1 Verification

Without the thermoelastic term, the Eq. (10)
becomes the frequency of a beam with attached
masses as in Ref. [8]. This equation is equivalent to
the Ref. [8] using Rayleigh’s energy method.

Considering a beam with thermoelastic property
only, then Eq. (13) has exactly equal form with
previous work.

In this work, in order to perform the systematic analysis,
non-dimensionalization for equations is used. As a material
of model, silicon is adopted and thermoelastic damping
effect is investigated. Fig. 2. shows thermoelastic damping

in silicon thin rectangular beam.

Fig. 2. Thermoelastic damping in silicon thin

rectangular beam.

In here, the configuration of thermoelastic damping curve
is same with previous study [2].

3.2 Effect of attached masses

The universal behavior of the normalized frequency shift
[Re(w) — wo]/weAg and of the normalized attenuation
Im(w)/ woAg as functions of the dimensionless variable
¢ are shown in Fig. 3.
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Fig. 3. The frequency shift and attenuation of small
flexural vibrations in beams due to thermoelastic

coupling.

In here, dotted lines are frequencies of thermoelastic
damping in thin rectangular beams [2], and solid lines
denote frequencies with random point masses. For the
proportion of attached masses, 5% of total mass is applied.
In case of concentrated masses, the magnitude of vibration
is decresed. As a result, though the amplitude of the
frequencies for beams can be different as shown Fig. 3., but
thermoelastic damping effect is same.

4. Conclusions

In this work, natural frequencies and Q-factor of micro-
beam considering thermoelastic damping and attached point
masses are investigated. Based on the thermoelastic
coupling, the equation of motion is derived. And, as
comparing with previous studies, thermoelastic effect in
beam is presented. Also, in order to show the generalized
tendency of thermoelastic damping, non-dimensionalization
is performed. Comparing with the previous study of
thermoelastic damping, the amplitude of vibration for the
beam with attached masses is decreased. And, though the
magnitude of the frequencies for beams(with attached
masses and without attached masses) can be different, but
thermoelastic damping effect is same. As a result, for
thermoelastic damping of beam with attached point masses,
the imaginary and real values of Q-factor are variable, but
its ratio is constant.
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