Browse > Article
http://dx.doi.org/10.12989/sss.2013.11.3.241

Numerical characterizations of a piezoelectric micromotor using topology optimization design  

Olyaie, M. Sadeghbeigi (Mechanical Engineering Department, Amirkabir University of Technology)
Razfar, M.R. (Mechanical Engineering Department, Amirkabir University of Technology)
Publication Information
Smart Structures and Systems / v.11, no.3, 2013 , pp. 241-259 More about this Journal
Abstract
This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.
Keywords
topology optimization; cell based smoothed finite element method; piezoelectric micromotor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carbonari, R.C., Nader, G. and Silva, E.C.N. (2006), "Experimental and numerical characterization of piezoelectric mechanisms designed using topology optimization", Int. ABCM symposium series in Mechatronics , 2, 425-432.
2 Carbonari, R.C., Silva, E.C.N. and Nishiwaki, S. (2005), "Design of piezoelectric multi-actuated microtools using topology optimization", Smart Mater. Struct., 14(6) , 1431-1447.   DOI   ScienceOn
3 Chang, S.J., Rogacheva, N.N. and Chou, C.C. (1995), "Analysis of methods for determining electromechanical coupling coefficients of piezoelectric elements", IEEE T. Ultrason. Ferr., 42(4), 630-640.   DOI   ScienceOn
4 Chen, J.S., Wu, C.T. and Yoon, S. Y. (2001), "A stabilized conforming nodal integration for Galerkin meshfree methods", Int. J. Numer. Meth. Eng., 50, 435-466.   DOI   ScienceOn
5 Choi, K.K. and Kim, N.H. (2005), Structural sensitivity analysis and optimization, Springer Science and Business Media, Inc., New York.
6 Dai, K.Y., Liu, G.R. and Nguyen, T.T. (2007), "An n-sided polygonal smoothed finite element method (nSFEM), for solid mechanics", Finite Elem. Anal. Des., 43(11-12), 847-860.   DOI   ScienceOn
7 Donoso, A.; Sigmund, O. (2009), "Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads", Struct. Multidiscip. O., 38(2), 171-183.   DOI
8 Friend, J., Umeshima, A., Ishii, T., Nakamura, K. and Ueha, S. (2004), "A piezoelectric linear actuator formed from a multitude of bimorphs", Sensor. Actuat. A-Phys., 109(3), 242-251.   DOI   ScienceOn
9 Huang, X. and Xie, Y.M. (2010), Evolutionary Topology Optimization of Continuum Structures Methods and Applications, John Wiley and Sons Ltd.
10 Jensen, J.S. (2009), A Note on Sensitivity Analysis of Linear Dynamic Systems with Harmonic Excitation, Report. Department of Mechanical Engineering, Technical University of Denmark.
11 Kang, Zh. and Wang, X. (2010), "Topology optimization of bending actuators with multilayer piezoelectric Material", Smart Mater. Struct., 19, 075018(11p).   DOI   ScienceOn
12 Kim, J.E., Kim, D.S., Ma, P.S. and Kim, Y.Y. (2010), "Multi-physics interpolation for the topology optimization of piezoelectric systems", Comput. Method. Appl. M., 199(49-52), 3153-3168.   DOI   ScienceOn
13 Kogl, M. and Silva, E.C.N. (2005), "Topology optimization of smart structures: design of piezoelectric plate and shell actuators", Smart Mater. Struct., 14(2) , 387-399.   DOI   ScienceOn
14 Liu, G.R., Dai, K.Y., Lim, K.M. and Gu, Y.T. (2003), "A radial point interpolation method for simulation of two-dimensional piezoelectric structures", Smart Mater. Struct., 12(2), 171-180.   DOI   ScienceOn
15 Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39(6), 859-877.   DOI   ScienceOn
16 Liu, G.R. and Nguyen, T.T. (2010), Smoothed finite element methods, CRC press, Taylor and Francis group.
17 Liu, G.R., Nguyen, T.T., Dai, K.Y. and Lam, K.Y. (2007), "Theoretical aspects of the smoothed finite element method (SFEM)", Int. J. Numer. Meth. Eng., 71(8), 902-930.   DOI   ScienceOn
18 Liu, G.R., Nguyen, T.T. and Lam, K.Y. (2009), "An edge-based smoothed finite element method (ES-FEM) for static, free and force vibration analyses of solids", J. Sound Vib., 320(4-5), 1100-1130.   DOI   ScienceOn
19 Liu, G.R., Nguyen, X.H. and Nguyen, T.T. (2010), "A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates", Int. J. Numer. Meth. Eng., 84(10), 1222-1256.   DOI   ScienceOn
20 Long, C.S., Loveday, P.W. and Groenwold, A.A. (2006), "Planar four node piezoelectric with drilling degrees of freedom", Int. J. Numer. Meth. Eng., 65(11), 1802-1830.   DOI   ScienceOn
21 Nguyen, X.H., Liu, G.R., Nguyen, T.T. and Nguyen, C.T. (2009), "An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures", Smart Mater. Struct., 18(6), 065015(12pp).   DOI   ScienceOn
22 Ohs, R.R. and Aluru, N.R. (2001), "Meshless analysis of piezoelectric devices", Comput. Mech., 27(1), 23-36.   DOI   ScienceOn
23 Sigmund, O. (1997), "On the design of compliant mechanisms using topology optimization", Mech. Struct. Mach., 25(4), 495-526.
24 Rozvany, G., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optimization, 4(3-4), 250-254.   DOI
25 Sadeghbeigi Olyaie, M., Razfar, M.R. and Kansa, E.J. (2011), "Reliability based topology optimization of a linear piezoelectric micromotor using the cell-based smoothed finite element method", CMES, 75(1), 43-88.
26 Sigmund, O. (1994), Design of Material Structures Using Topology Optimization, Ph.D. Thesis, Department of Solid mechanics, Technical University of Denmark.
27 Silva, E.C.N. (2003), "Topology optimization applied to the design of linear piezoelectric motors", Smart Mater. Struct., 14(4), 309-322.
28 Silva, R.C.N. and Kikuchi, N. (1999), "Design of piezocomposite materials and piezoelectric transducers using topology optimization-part III", Arch. Comput. Method E., 6(4), 305-329.   DOI
29 Svanberg, K. (1987), "Method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373.   DOI   ScienceOn
30 Sze, K.Y., Yang, X.M. and Yao, L.Q. (2004), "Stabilized plane and axisymmetric piezoelectric finite element models", Finite Elem. Anal. Des. 40(9-10), 1105-1122.   DOI   ScienceOn
31 Ueha, S. and Tomikawa, Y. (1993), Ultrasonic Motors-Theory and Applications. Monographs in Electrical and Electronic Engineering, 29, Clarendon Press, Oxford.
32 Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optimization, 1(4), 193-202.   DOI
33 Allik, H. and Hughes, T.J.R. (1970), "Finite element method for piezo-electric vibration", Int. J. Numer. Meth. Eng., 2(2), 151-157.   DOI
34 Arora, J.S. (2004), Introduction to optimum design. 2nd edition, Elsevier academic press.
35 Begg, D.W. and Liu. X. (2000), "On simultaneous optimization of smart structures-Part II: algorithms and examples", Comput. Method. Appl. M., 184(1), 25-37.   DOI   ScienceOn
36 Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. M., 71(2), 197-224.   DOI   ScienceOn
37 Bendsoe, M.P. and Sigmund, O. (1999), "Material interpolations in topology optimization", Arch. Appl. Mech., 69(9-10), 635-654.   DOI   ScienceOn
38 Bendsoe, M.P. and Sigmund, O. (2003), Topology optimization: theory, methods and applications, Springer, Berlin.
39 Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76(1-3), 347-363.   DOI   ScienceOn
40 Bordas, S.P.A., Rabczuk. T., Hung, N.X., Nguyen, V.P, Natarajan, S., Bog, T., Quan, D.M. and Hiep, N.V. (2010), "Strain smoothing in FEM and XFEM", Comput. Struct., 88(23-24), 1419-1443.   DOI   ScienceOn