• 제목/요약/키워드: Microarray Data

검색결과 471건 처리시간 0.026초

Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer

  • He, Shan;Lyu, Fangqiao;Lou, Lixia;Liu, Lu;Li, Songlin;Jakowitsch, Johannes;Ma, Yan
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.273-286
    • /
    • 2021
  • Background: Prostate carcinoma is the second most common cancer among men worldwide. Developing new therapeutic approaches and diagnostic biomarkers for prostate cancer (PC) is a significant need. The Chinese herbal medicine Panax quinquefolius saponins (PQS) have been reported to show anti-tumor effects. We hypothesized that PQS exhibits anti-cancer activity in human PC cells and we aimed to search for novel biomarkers allowing early diagnosis of PC. Methods: We used the human PC cell line DU145 and the prostate epithelial cell line PNT2 to perform cell viability assays, flow cytometric analysis of the cell cycle, and FACS-based apoptosis assays. Microarray-based gene expression analysis was used to display specific gene expression patterns and to search for novel biomarkers. Western blot and quantitative real-time PCR were performed to demonstrate the expression levels of multiple cancer-related genes. Results: Our data showed that PQS inhibited the viability of DU145 cells and induced cell cycle arrest at the G1 phase. A significant decrease in DU145 cell invasion and migration were observed after 24 h treatment by PQS. PQS up-regulated the expression levels of p21, p53, TMEM79, ACOXL, ETV5, and SPINT1 while it down-regulated the expression levels of bcl2, STAT3, FANCD2, DRD2, and TMPRSS2. Conclusion: PQS promoted cells apoptosis and inhibited the proliferation of DU145 cells, which suggests that PQS may be effective for treating PC. TMEM79 and ACOXL were expressed significantly higher in PNT2 than in DU145 cells and could be novel biomarker candidates for PC diagnosis.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

산전 진단에서의 염기 서열 분석 방법의 의의 (Challenges of Genome Wide Sequencing Technologies in Prenatal Medicine)

  • 강지언
    • 한국콘텐츠학회논문지
    • /
    • 제22권2호
    • /
    • pp.762-769
    • /
    • 2022
  • 산전 진단에서 유전자 검사는 임상 관리 및 부모의 의사 결정에 중요한 정보를 제공하고 있다. 지난 여러 해 동안 G-banidng 핵형 분석, 형광성 제자리 교잡 방법, 염색체 마이크로어레이 및 유전자 패널과 같은 세포유전학적 검사 방법들이 일반적인 산전 진단의 검사의 일부가 되어 발전해 왔다. 그러나 이러한 각각의 방법은 한계를 가지고 있으며 각각의 진단 기술의 단점들을 보완할 수 있는 혁신적인 검사 방법의 도입의 필요성이 매우 필요한 시점이다. 최근 차세대 염기서열 분석에 기반한 유전체 분석 방법의 도입은 현재의 산전 진단에서의 관행에 많은 변화를 주고 있다. 이렇게 산전 진단에서의 유전체 단위의 염기서열 분석은 정교한 해상도와 높은 정확도를 통해 데이터를 빠르게 분석하고 비용을 감소시키는 기술의 혁신을 보여주고 있다. 따라서 본 논문에서는 시퀀싱 기반 산전 진단의 현재 상태와 관련 과제 및 미래 전망에 대하여 검토해 보았다.

ZNF204P is a stemness-associated oncogenic long non-coding RNA in hepatocellular carcinoma

  • Hwang, Ji-Hyun;Lee, Jungwoo;Choi, Won-Young;Kim, Min-Jung;Lee, Jiyeon;Chu, Khanh Hoang Bao;Kim, Lark Kyun;Kim, Young-Joon
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.281-286
    • /
    • 2022
  • Hepatocellular carcinoma is a major health burden, and though various treatments through much research are available, difficulties in early diagnosis and drug resistance to chemotherapy-based treatments render several ineffective. Cancer stem cell model has been used to explain formation of heterogeneous cell population within tumor mass, which is one of the underlying causes of high recurrence rate and acquired chemoresistance, highlighting the importance of CSC identification and understanding the molecular mechanisms of CSC drivers. Extracellular CSC-markers such as CD133, CD90 and EpCAM have been used successfully in CSC isolation, but studies have indicated that increasingly complex combinations are required for accurate identification. Pseudogene-derived long non-coding RNAs are useful candidates as intracellular CSC markers - factors that regulate pluripotency and self-renewal - given their cancer-specific expression and versatile regulation across several levels. Here, we present the use of microarray data to identify stemness-associated factors in liver cancer, and selection of sole pseudogene-derived lncRNA ZNF204P for experimental validation. ZNF204P knockdown impairs cell proliferation and migration/invasion. As the cytosolic ZNF204P shares miRNA binding sites with OCT4 and SOX2, well-known drivers of pluripotency and self-renewal, we propose that ZNF204P promotes tumorigenesis through the miRNA-145-5p/OCT4, SOX2 axis.

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

  • Ju-Ri Woo;Doo-Ho Choi;Muhammed Taofiq Hamza;Kyung-Oh Doh;Chang-Yoon Lee;Yeon-Sik Choo;Sangman Lee;Jong-Guk Kim;Heeyoun Bunch;Young-Bae Seu
    • Mycobiology
    • /
    • 제50권5호
    • /
    • pp.366-373
    • /
    • 2022
  • Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Identification of CNVs and their association with the meat traits of Hanwoo

  • Chan Mi Bang;Khaliunaa Tseveen;Gwang Hyeon Lee;Gil Jong Seo;Hong Sik Kong
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.158-166
    • /
    • 2023
  • Background: Copy number variation (CNV) can be identified using next-generation sequencing and microarray technologies, the research on the analysis of its association with meat traits in livestock breeding has significantly increased in recent years. Hanwoo is an inherent species raised in the Republic of Korea. It is now considered one of the most economically important species and a major food source mainly used for meat (Hanwoo beef). Methods: In this study, CNVs and the relationship between the obtained CNV regions (CNVRs) can be identified in the Hanwoo steer samples (n = 473) using Illumina Hanwoo SNP 50K bead chip and bioinformatic tools, which were used to locate the required data and meat traits were investigated. The PennCNV software was used for the identification of CNVs, followed by the use of the CNV Ruler software for locating the different CNVRs. Furthermore, bioinformatics analysis was performed. Results: We found a total of 2,575 autosomal CNVs (933 losses, 1,642 gains) and 416 CNVRs (289 gains, 111 losses, and 16 mixed), which were established with ranged in size from 2,183 bp to 983,333 bp and 10,004 bp to 381,836 bp, respectively. Upon analyzing the restriction of minor alleles frequency > 0.05 for meat traits association, 6 CNVRs in the carcass weight, 2 CNVRs in the marbling score, 3 CNVRs in the backfat thickness, and 2 CNVRs in the longissimus muscle area were related to the meat traits. In addition, we identified an overlap of 347 CNVRs. Moreover, 3 CNVRs were determined to have a gene that affects meat quality. Conclusions: Our results confirmed the relationship between Hanwoo CNVR and meat traits, and the possibility of overlapping candidate genes, annotations, and quantitative trait loci that results depended on to contribute to the greater understanding of CNVs in Hanwoo and its role in genetic variation among cattle livestock.

인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현 (Surface maker and gene expression of human adipose stromal cells growing under human serum.)

  • 전은숙;조현화;주혜준;김회규;배용찬;정진섭
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.678-686
    • /
    • 2007
  • 인간중간엽줄기세포는(Human mesenchymal stem cells, hMSC) 골수, 지방, 피부, 근육, 혈액에 존재하며, 뼈, 연골, 지방, 근육, 신경세포로 분화가능성이 보고되어 손상조직의 재생을 위한 재료로서뿐만 아니라 유전자치료의 매개체로 이용될 수 있는 가능성이 제안되고 있다. 인간중간엽줄기세포의 적절한 배양조건에는 소 태아혈청(fetal bovine serum, FBS)이 요구되어지므로 세포치료에는 소 태아혈청이 다수 포함되어 있을 것이며 세포배양 배지 유래 소 태아혈청의 단백질에 의한 면역거부반응이 우려된다. 이미 앞선 연구에서 자가혈청 하에서 인체지방줄기세포 분리와 계속적인 세포배양을 실시하였을 때 인체지방줄기세포의 증식능력과 다 분화 능이 유지되며 면역결핍 생쥐에 골수의 말초혈액에서 유래된 CD34세포 이식 시 안착 능을 촉진함을 보였다. 본 연구에서 인체지방줄기세포가 인체혈청 하에서 배양되었을 때 소 태아혈청 하에서 배양할 때 발현하는 표면항원을 유지함을 확인했으며 microarray를 사용하여 유전자 발현을 비교했다. 유 세포 분석을 통하여 인체혈청 하에서 계속적으로 배양된 인체유래지방줄기세포에서 HLA-DR, CD117, CD29 와 CD44 의 발현이 소 태아혈청 하에서 배양했을 때와 비슷함을 밝혔다. 그러나 인체혈청 하에서 배양된 인체지방줄기세포의 유전자 발현형태와 소 태아혈청 하에서 배양된 세포의 유전자 발현형태 간에는 상당한 차이를 보였다. 그러므로 본 연구는 인체혈청 하에서 배양된 인체지방기질줄기세포가 임상적용을 위한 선행 데이터로써 직접적인 추정을 하기 위해서는 인체지방기질줄기세포 이식연구에 in vivo 동물실험연구가 수행되어져야 함을 제시하고 있다.

FCAnalyzer: A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms

  • Kim, Sang-Bae;Ryu, Gil-Mi;Kim, Young-Jin;Heo, Jee-Yeon;Park, Chan;Oh, Berm-Seok;Kim, Hyung-Lae;Kimm, Ku-Chan;Kim, Kyu-Won;Kim, Young-Youl
    • Genomics & Informatics
    • /
    • 제5권1호
    • /
    • pp.10-18
    • /
    • 2007
  • Numerous studies have reported that genes with similar expression patterns are co-regulated. From gene expression data, we have assumed that genes having similar expression pattern would share similar transcription factor binding sites (TFBSs). These function as the binding regions for transcription factors (TFs) and thereby regulate gene expression. In this context, various analysis tools have been developed. However, they have shortcomings in the combined analysis of expression patterns and significant TFBSs and in the functional analysis of target genes of significantly overrepresented putative regulators. In this study, we present a web-based A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms (FCAnalyzer). This system integrates microarray clustering data with similar expression patterns, and TFBS data in each cluster. FCAnalyzer is designed to perform two independent clustering procedures. The first process clusters gene expression profiles using the K-means clustering method, and the second process clusters predicted TFBSs in the upstream region of previously clustered genes using the hierarchical biclustering method for simultaneous grouping of genes and samples. This system offers retrieved information for predicted TFBSs in each cluster using $Match^{TM}$ in the TRANSFAC database. We used gene ontology term analysis for functional annotation of genes in the same cluster. We also provide the user with a combinatorial TFBS analysis of TFBS pairs. The enrichment of TFBS analysis and GO term analysis is statistically by the calculation of P values based on Fisher’s exact test, hypergeometric distribution and Bonferroni correction. FCAnalyzer is a web-based, user-friendly functional clustering analysis system that facilitates the transcriptional regulatory analysis of co-expressed genes. This system presents the analyses of clustered genes, significant TFBSs, significantly enriched TFBS combinations, their target genes and TFBS-TF pairs.

Gene Co-expression Network Analysis Associated with Acupuncture Treatment of Rheumatoid Arthritis: An Animal Model

  • Ravn, Dea Louise;Mohammadnejad, Afsaneh;Sabaredzovic, Kemal;Li, Weilong;Lund, Jesper;Li, Shuxia;Svendsen, Anders Jorgen;Schwammle, Veit;Tan, Qihua
    • Journal of Acupuncture Research
    • /
    • 제37권2호
    • /
    • pp.128-135
    • /
    • 2020
  • Background: Classical acupuncture is being used in the treatment of rheumatoid arthritis (RA). To explore the biological response to acupuncture, a network-based analysis was performed on gene expression data collected from an animal model of RA treated with acupuncture. Methods: Gene expression data were obtained from published microarray studies on blood samples from rats with collagen induced arthritis (CIA) and non-CIA rats, both treated with manual acupuncture. The weighted gene co-expression network analysis was performed to identify gene clusters expressed in association with acupuncture treatment time and RA status. Gene ontology and pathway analyses were applied for functional annotation and network visualization. Results: A cluster of 347 genes were identified that differentially downregulated expression in association with acupuncture treatment over time; specifically in rats with CIA with module-RA correlation at 1 hour after acupuncture (-0.27; p < 0.001) and at 34 days after acupuncture (-0.33; p < 0.001). Functional annotation showed highly significant enrichment of porphyrin-containing compound biosynthetic processes (p < 0.001). The network-based analysis also identified a module of 140 genes differentially expressed between CIA and non-CIA in rats (p < 0.001). This cluster of genes was enriched for antigen processing and presentation of exogenous peptide antigen (p < 0.001). Other functional gene clusters previously reported in earlier studies were also observed. Conclusion: The identified gene expression networks and their hub-genes could help with the understanding of mechanisms involved in the pathogenesis of RA, as well understanding the effects of acupuncture treatment of RA.

암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석 (Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells)

  • 김종명;유지민;배용찬;정진섭
    • 생명과학회지
    • /
    • 제21권5호
    • /
    • pp.631-646
    • /
    • 2011
  • 중간엽 줄기 세포는 다분화능을 가지고 있으며 골수, 지방, 태반, 치아속질, 윤활막, 편도 및 가슴샘 등 인체의 다양한 조직에서 분리된다. 중간엽 줄기세포는 조직의 항상성을 조절하며 다분화능, 분리와 조작의 용이함, 암세포로의 화학주성 및 면역 반응 조절 등의 특징을 가지고 있어서 재생 의학, 암 치료 및 식대주 질환(GVHD) 등에 이용할 수 있는 세포치료제로 주목 받고 있다. 하지만 주위 세포와 조직을 지지하고 조절하는 특징과 관련하여 중간엽 줄기세포가 혈관 생성을 촉진하고 성장인자를 분비하며 암세포를 공격하는 면역 반응을 억제함으로써 암의 진행을 촉진시킨다는 사실 또한 보고 되고 있다. 이러한 사실들로 인해 중간엽 줄기세포의 임상 적용이 제한되고 있다. 본 연구에서는 어떠한 기전을 통해서 중간엽 줄기세포가 암의 진행을 촉진하는 지지 세포로 기능하는지를 밝히기 위해서 인체 지방 조직에서 유래한 중간엽 줄기세포를 두 개의 암세포주(H460, U87MG)와 각각 공동 배양하고 microarray를 이용해서 암세포와 공동 배양되지 않은 중간엽 줄기세포와 유전자의 발현을 비교하였다. 두 암세포주와 공동배양에서 공통적으로 2배 이상 차이 나는 유전자를 DAVID (Database for Annotation, Visualization and Integrated Discovery)와 PANTHER (Protein ANalysis THrough Evolutionary Relationships)를 이용해 분석하였으며 생물학적 과정, 분자적 기능, 세포의 구성 성분, 단백질의 종류, 질병과 인체 조직 그리고 신호전달에 관련된 정보를 획득하였다. 이를 통해서 암세포는 중간엽 줄기세의 분화, 증식, 에너지 대사, 세포의 구조 및 분비기능을 조절하여 유전자의 발현 양상을 암 연관 섬유모세포(cancer associated fibroblast)와 유사한 세포로 변형 시킨다는 사실을 알 수 있었다. 본 연구의 결과는 중간엽 줄기세포를 이용한 임상 치료제의 효과와 안정성을 개선하는데 응용될 수 있을 것이다.