DOI QR코드

DOI QR Code

Identification of CNVs and their association with the meat traits of Hanwoo

  • Chan Mi Bang (Department of Genomic Informatics, Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Khaliunaa Tseveen (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • Gwang Hyeon Lee (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • Gil Jong Seo (Department of Applied Biotechnology, The Graduate School of Hankyong National University) ;
  • Hong Sik Kong (Department of Applied Biotechnology, The Graduate School of Hankyong National University)
  • Received : 2023.08.08
  • Accepted : 2023.09.11
  • Published : 2023.09.30

Abstract

Background: Copy number variation (CNV) can be identified using next-generation sequencing and microarray technologies, the research on the analysis of its association with meat traits in livestock breeding has significantly increased in recent years. Hanwoo is an inherent species raised in the Republic of Korea. It is now considered one of the most economically important species and a major food source mainly used for meat (Hanwoo beef). Methods: In this study, CNVs and the relationship between the obtained CNV regions (CNVRs) can be identified in the Hanwoo steer samples (n = 473) using Illumina Hanwoo SNP 50K bead chip and bioinformatic tools, which were used to locate the required data and meat traits were investigated. The PennCNV software was used for the identification of CNVs, followed by the use of the CNV Ruler software for locating the different CNVRs. Furthermore, bioinformatics analysis was performed. Results: We found a total of 2,575 autosomal CNVs (933 losses, 1,642 gains) and 416 CNVRs (289 gains, 111 losses, and 16 mixed), which were established with ranged in size from 2,183 bp to 983,333 bp and 10,004 bp to 381,836 bp, respectively. Upon analyzing the restriction of minor alleles frequency > 0.05 for meat traits association, 6 CNVRs in the carcass weight, 2 CNVRs in the marbling score, 3 CNVRs in the backfat thickness, and 2 CNVRs in the longissimus muscle area were related to the meat traits. In addition, we identified an overlap of 347 CNVRs. Moreover, 3 CNVRs were determined to have a gene that affects meat quality. Conclusions: Our results confirmed the relationship between Hanwoo CNVR and meat traits, and the possibility of overlapping candidate genes, annotations, and quantitative trait loci that results depended on to contribute to the greater understanding of CNVs in Hanwoo and its role in genetic variation among cattle livestock.

Keywords

References

  1. Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY, Kim JY, Pasaje CF, Lee JS, Shin HD. 2010. Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genomics 11:232. 
  2. Choi JW, Lee KT, Liao X, Stothard P, An HS, Ahn S, Lee S, Lee SY, Moore SS, Kim TH. 2013. Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle. Mamm. Genome 24:151-163.  https://doi.org/10.1007/s00335-013-9449-z
  3. Dang CG, Lee JJ, Kim NS. 2011. Estimation of inbreeding coefficients and effective population size in breeding bulls of Hanwoo (Korean cattle). J. Anim. Sci. Technol. 53:297-302.  https://doi.org/10.5187/JAST.2011.53.4.297
  4. da Silva JM, Giachetto PF, da Silva LO, Cintra LC, Paiva SR, Yamagishi ME, Caetano AR. 2016. Genome-wide copy number variation (CNV) detection in Nelore cattle reveals highly frequent variants in genome regions harboring QTLs affecting production traits. BMC Genomics 17:454. 
  5. Druet T, Ahariz N, Cambisano N, Tamma N, Michaux C, Coppieters W, Charlier C, Georges M. 2014. Selection in action: dissecting the molecular underpinnings of the increasing muscle mass of Belgian Blue Cattle. BMC Genomics 15:796. 
  6. Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P. 2009. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet. Sel. Evol. 41:36. 
  7. Henrichsen CN, Chaignat E, Reymond A. 2009. Copy number variants, diseases and gene expression. Hum. Mol. Genet. 18(R1):R1-R8.  https://doi.org/10.1093/hmg/ddp011
  8. Jager ND, Hudson NJ, Reverter A, Barnard R, Cafe LM, Greenwood PL, Dalrymple BP. 2013. Gene expression phenotypes for lipid metabolism and intramuscular fat in skeletal muscle of cattle. J. Anim. Sci. 91:1112-1128.  https://doi.org/10.2527/jas.2012-5409
  9. Kalyuzhnaya T, Karpenko L, Orlova D, Drozd A, Urban V. 2020. An express assessment method for meat quality and safety. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 11:11A01H. 
  10. Kim JH, Hu HJ, Yim SH, Bae JS, Kim SY, Chung YJ. 2012. CNVRuler: a copy number variation-based case-control association analysis tool. Bioinformatics 28:1790-1792.  https://doi.org/10.1093/bioinformatics/bts239
  11. Kuchenmeister U and Kuhn G. 2003. Regulation of intracellular Ca2+ concentration and meat quality in pigs. Arch. Anim. Breed. 46:445-454.  https://doi.org/10.5194/aab-46-445-2003
  12. Leal-Gutierrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. 2019. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics 20:151. 
  13. Lee JH, Lee YM, Lee JY, Oh DY, Jeong DJ, Kim JJ. 2013. Identification of single nucleotide polymorphisms (SNPs) of the bovine growth hormone (bGH) gene associated with growth and carcass traits in Hanwoo. Asian-Australas. J. Anim. Sci. 26:1359-1364.  https://doi.org/10.5713/ajas.2013.13248
  14. Lee JY and Kim DC. 2009. Important SNPs identification from the economic traits for the high quality Korean cattle. Commun. Stat. Appl. Methods 16:67-74. 
  15. Lee SH, Lim D, Jang GW, Cho YM, Choi BH, Kim SD, Oh SJ, Lee JH, Yoon DH, Park EW, Lee HK, Hong SK, Yang BS. 2012. Genome wide association study to identity QTL for growth taits in Hanwoo. J. Anim. Sci. Technol. 54:323-329.  https://doi.org/10.5187/JAST.2012.54.5.323
  16. Lee SH, Van Der Werf JH, Lee SH, Park EW, Oh SJ, Gibson JP, Thompson JM. 2010. Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean Cattle). Anim. Genet. 41:442-444.  https://doi.org/10.1111/j.1365-2052.2010.02024.x
  17. Lim D, Lee SH, Kim NK, Cho YM, Chai HH, Seong HH, Kim H. 2013. Gene co-expression analysis to characterize genes related to marbling trait in Hanwoo (Korean) cattle. Asian-Australas. J. Anim. Sci. 26:19-29.  https://doi.org/10.5713/ajas.2012.12375
  18. Liu GE and Bickhart DM. 2012. Copy number variation in the cattle genome. Funct. Integr. Genomics 12:609-624.  https://doi.org/10.1007/s10142-012-0289-9
  19. Ramayo-Caldas Y, Castello A, Pena RN, Alves E, Mercade A, Souza CA, Fernandez AI, Perez-Enciso M, Folch JM. 2010. Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics 11:593. 
  20. Reddy KE, Jeong JY, Lee SD, Baek YC, Oh YK, Kim M, So KM, Kim DW, Kim JH, Park S, Lee HJ. 2017. Effect of different early weaning regimens for calves on adipogenic gene expression in Hanwoo loin at the fattening stage. Livest. Sci. 195:87-98.  https://doi.org/10.1016/j.livsci.2016.11.014
  21. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M. 2004. Large-scale copy number polymorphism in the human genome. Science 305:525-528.  https://doi.org/10.1126/science.1098918
  22. Seong JY, Oh JD, Yang DY, Kong HS. 2014. Association study between the SNP of DECR1 gene and economic traits in Hanwoo. J. Agric. Life Sci. 48:139-146.  https://doi.org/10.14397/jals.2014.48.3.139
  23. Shin DH and Oh JD. 2016. Genome-wide copy number variations and association study with carcass traits in Hanwoo. Ann. Anim. Resour. Sci. 27:8-16.  https://doi.org/10.12718/AARS.2016.27.1.8
  24. Upadhyay M, da Silva VH, Megens HJ, Visker MHPW, AjmoneMarsan P, Balteanu VA, Dunner S, Garcia JF, Ginja C, Kantanen J, Groenen MAM, Crooijmans RPMA. 2017. Distribution and functionality of copy number variation across European cattle populations. Front. Genet. 8:108. 
  25. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. 2007. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17:1665-1674.  https://doi.org/10.1101/gr.6861907
  26. Xie C and Tammi MT. 2009. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10:80. 
  27. Xing T, Gao F, Tume RK, Zhou G, Xu X. 2019. Stress effects on meat quality: a mechanistic perspective. Compr. Rev. Food Sci. Food Saf. 18:380-401.  https://doi.org/10.1111/1541-4337.12417
  28. Xu Y, Zhang L, Shi T, Zhou Y, Cai H, Lan X, Zhang C, Lei C, Chen H. 2013. Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm. Genome 24:508-516.  https://doi.org/10.1007/s00335-013-9483-x
  29. Yang L, Xu L, Zhou Y, Liu M, Wang L, Kijas JW, Zhang H, Li L, Liu GE. 2018. Diversity of copy number variation in a worldwide population of sheep. Genomics 110:143-148. https://doi.org/10.1016/j.ygeno.2017.09.005