DOI QR코드

DOI QR Code

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

  • Ju-Ri Woo (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Doo-Ho Choi (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Muhammed Taofiq Hamza (Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kyung-Oh Doh (Department of Physiology, College of Medicine, Yeungnam University) ;
  • Chang-Yoon Lee (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Yeon-Sik Choo (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Sangman Lee (Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jong-Guk Kim (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Heeyoun Bunch (Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Young-Bae Seu (School of Life Science and Biotechnology, Kyungpook National University)
  • Received : 2022.07.05
  • Accepted : 2022.09.01
  • Published : 2022.10.31

Abstract

Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [2016R1A6A1A05011910] and Research Institute for Dokdo and Ulleung-do Island of Kyungpook National University, Korea.

References

  1. Chen G, Fu Y, Yang W, et al. Effects of polysaccharides from the base of Flammulina velutipes stipe on growth of murine RAW264.7, B16F10 and L929 cells. Int J Biol Macromol. 2018;107(Pt B):2150-2156. https://doi.org/10.1016/j.ijbiomac.2017.10.090
  2. Zhang T, Ye J, Xue C, et al. Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr Polym. 2018;197:147-156.
  3. Shi C, Wu Y, Fang D, et al. Nanocomposite packaging regulates extracellular ATP and programed cell death in edible mushroom (Flammulina velutipes). Food Chem. 2020;309:125702.
  4. Chen X, Fang D, Zhao R, et al. Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide. Int J Biol Macromol. 2019;140:505-514. https://doi.org/10.1016/j.ijbiomac.2019.08.163
  5. Wu Z, Peng W, He X, et al. Mushroom tumor: a new disease on Flammulina velutipes caused by Ochrobactrum pseudogrignonense. FEMS Microbiol Lett. 2016;363(2):fnv226.
  6. Liu ZH, Sossah FL, Li Y, et al. First report of Ewingella americana causing bacterial brown rot disease on cultivated needle mushroom (Flammulina velutipes) in China. Plant Dis. 2018;102(12):2633-2633.
  7. Omholt SW, Plahte E, Oyehaug L, et al. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics. 2000;155(2):969-980. https://doi.org/10.1093/genetics/155.2.969
  8. Chen IMA, Chu K, Palaniappan K, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47(D1):D666-D677. https://doi.org/10.1093/nar/gky901
  9. Yamamoto K, Sasaki T. Large-scale Est sequencing in rice. Plant Mol Biol. 1997;35(1-2):135-144. https://doi.org/10.1023/A:1005735322577
  10. Sim GK, Kafatos FC, Jones CW, et al. Use of a cDNA library for studies on evolution and developmental expression of the chorion multigene families. Cell. 1979;18(4):1303-1316. https://doi.org/10.1016/0092-8674(79)90241-1
  11. Gomez-Serrano M, Camafeita E, Loureiro M, et al. Mitoproteomics: tackling mitochondrial dysfunction in human disease. Oxid Med Cell Longev. 2018;2018:1435934.
  12. Whitfield CW, Band MR, Bonaldo MF, et al. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res. 2002;12(4):555-566. https://doi.org/10.1101/gr.5302
  13. Chang TW. Binding of cells to matrixes of distinct antibodies coated on solid surface. J Immunol Methods. 1983;65(1-2):217-223.
  14. Dudda-Subramanya R, Lucchese G, Kanduc D, et al. Clinical applications of DNA microarray analysis. J Exp Ther Oncol. 2003;3(6):297-304. https://doi.org/10.1111/j.1533-869X.2003.01104.x
  15. Wu J, Baldwin IT. New insights into plant responses to the attack from insect herbivores. Annu Rev Genet. 2010;44:1-24. https://doi.org/10.1146/annurev-genet-102209-163500
  16. Chen Y, Barat B, Ray WK, et al. Membrane proteomes and ion transporters in Bacillus anthracis and Bacillus subtilis dormant and germinating spores. J Bacteriol. 2019;201:e00662-18.
  17. Dobson CM. 2000. The nature and significance of protein folding. In: Pain RH, editor. Mechanisms of protein folding. Oxford, Oxfordshire: Oxford University Press. p. 1-28.
  18. Koegl M, Uetz P. Improving yeast two-hybrid screening systems. Brief Funct Genomic Proteomic. 2007;6(4):302-312. https://doi.org/10.1093/bfgp/elm035
  19. Liu J, Chang M, Meng J, et al. A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress. J Agric Food Chem. 2018;66(14):3716-3725. https://doi.org/10.1021/acs.jafc.8b00383
  20. Liu J, Men J, Chang M, et al. iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteomics. 2017;156:75-84. https://doi.org/10.1016/j.jprot.2017.01.009
  21. Lin PI, Vance JM, Pericak-Vance MA, et al. No gene is an island: the flip-flop phenomenon. Am J Hum Genet. 2007;80(3):531-538. https://doi.org/10.1086/512133
  22. Fukushima M, Ohashi T, Fujiwara Y, et al. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp Biol Med. 2001;226(8):758-765. https://doi.org/10.1177/153537020222600808
  23. Rio DC, Ares M, Jr, Hannon GJ, et al. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439.
  24. Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.
  25. Magae Y, Sunagawa M. Characterization of a mycovirus associated with the brown discoloration of edible mushroom, Flammulina velutipes. Virol J. 2010;7:342.
  26. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365-386.
  27. Min B, Yoon H, Park J, et al. Unusual genome expansion and transcription suppression in ectomycorrhizal Tricholoma matsutake by insertions of transposable elements. PLoS One. 2020;15(1):e0227923.
  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  29. Marcus K, Lelong C, Rabilloud T. What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes. 2020;8(3):17.
  30. Bandow JE, Baker JD, Berth M, et al. Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies-COPD biomarker discovery study. Proteomics. 2008;8(15):3030-3041. https://doi.org/10.1002/pmic.200701184
  31. Oakley BR, Kirsch DR, Morris NR. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980;105(2):361-363. https://doi.org/10.1016/0003-2697(80)90470-4
  32. Pedreschi R, Hertog ML, Carpentier SC, et al. Treatment of missing values for multivariate statistical analysis of gel-based proteomics data. Proteomics. 2008;8(7):1371-1383. https://doi.org/10.1002/pmic.200700975
  33. Lee JH, Lee HJ, Lee CH, et al. Ethanolic Hwaeumjeon induces mitochondrial dependent apoptosis partly via PI3K/AKT/HSP27/ERK pathways and inhibits PSA and AR in LNCaP cells. Environ Toxicol Pharmacol. 2009;28(1):78-85. https://doi.org/10.1016/j.etap.2009.02.008
  34. Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996;68(5):850-858. https://doi.org/10.1021/ac950914h
  35. Faserl K, Chetwynd AJ, Lynch I, et al. Corona isolation method matters: capillary electrophoresis mass spectrometry based comparison of protein Corona compositions following on-Particle versus in-Solution or in-Gel digestion. Nanomaterials. 2019;9(6):898.
  36. Welton JL, Khanna S, Giles PJ, et al. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics. 2010;9(6):1324-1338.
  37. Sangha JS, Chen YH, Kaur J, et al. Proteome analysis of rice (Oryza sativa L.) mutants reveals differentially induced proteins during brown planthopper (Nilaparvata lugens) infestation. Int J Mol Sci. 2013;14(2):3921-3945. https://doi.org/10.3390/ijms14023921
  38. Sawahata T, Shimano S, Suzuki M. Tricholoma matsutake 1-ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza. 2008;18(2):111-114. https://doi.org/10.1007/s00572-007-0158-x
  39. Vaario LM, Heinonsalo J, Spetz P, et al. The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza. 2012;22(6):409-418. https://doi.org/10.1007/s00572-011-0416-9
  40. Yamada M, Sakuraba S, Shibata K, et al. Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display. FEMS Microbiol Lett. 2006;254(1):165-172. https://doi.org/10.1111/j.1574-6968.2005.00023.x
  41. Muraguchi H, Kamada T. A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genet Biol. 2000;29(1):49-59.
  42. Yang X, Zhao H, Wang Y, et al. The activation of Heat-Shock protein after copper (II) and/or arsenic (III)-induced imbalance of homeostasis, inflammatory response in chicken rectum. Biol Trace Elem Res. 2020;195(2):613-623. https://doi.org/10.1007/s12011-019-01871-8
  43. Rapp G, Klaudiny J, Hagendorff G, et al. Complete sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic amplification of cDNA from human ovarian granulosa cells. Biol Chem Hoppe Seyler. 1989;370(10):1071-1075. https://doi.org/10.1515/bchm3.1989.370.2.1071
  44. Goodman HM. 2009. Basic medical endocrinology. 4th ed. Amsterdam, Netherlands: Elsevier; p. 132.