• Title/Summary/Keyword: Microalgal

Search Result 204, Processing Time 0.022 seconds

Incubation of Scenedesmus quadricauda based on food waste compost

  • Kim, Keon Hee;Lee, Jae Han;Park, Chae Hong;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1039-1048
    • /
    • 2020
  • Food waste causes various economic losses and environmental pollution problems such as soil pollution and groundwater pollution. Food waste has been used as a resource in various forms and has been used mostly for feed and composting. This study compared microalgal nutrient medium (BG-11) with food waste compost to determine the possibility of using it as a culture medium. Scenedesmus quadricauda was isolated and cultured in an eutrophic reservoir and incubated for 3 days in distilled water before laboratory use. Food waste compost was produced in two food waste processing facilities, and hot water was extracted in the laboratory to be used for microalgae cultivation. The growth curve of the microalgae was analyzed based on the Chl-a concentration measured during the experiment, and the growth rate of the microalgae grown in the food waste compost was compared with the growth rate of those grown in the nutrient medium. Food waste compost showed a similar growth rate to that of the nutrient medium, and there was a difference depending on the manufacturing facility. The growth of microalgae in such food waste was further amplified when trace elements were added and showed better growth than that of the nutrient media. Particularly, when trace elements were added, the growth rate increased, and the growth period was further extended. Therefore, food waste compost can be sufficiently utilized as a microalgal culture medium, and if trace elements are added, it is considered that microalgae can be more effectively cultured compared to the existing nutrient medium.

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho;Jo, Seung-Woo;Do, Jeong-Mi;Kim, Il-Sup;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.387-397
    • /
    • 2021
  • There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.

Microalgal diversity in response to differential heavy metals-contaminated wastewater levels at North Nile Delta, Egypt

  • Maha Youssef Kamal Elmousel;Eithar El-Mohsnawy;Yassin Mohamed Al-Sodany;Eladl Galal Eltanahy;Mohamed Ali Abbas;Awatif Saad Ali
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.157-167
    • /
    • 2023
  • Background: The most hazardous wastewater sources in the northern part of the Middle Nile Delta, Egypt; receiving a massive amount of agricultural, industrial, and sewage drainage are Kitchener drain which is one of the tallest drainage systems, and Burullus Lake which represents the 2nd largest Egyptian coastal lake. Results: The current work is to determine the abundance and frequency of cyanophytes, chlorophytes, and bacillariophytes and the correlation between them and environmental abiotic components. Among sixty nine microalgal species, 19 species are belong Cyanophyta, 26 belong Chlorophyta and 24 belong Bacillariophyta. Genus Scenedesmus (Chlorophyta) was the most abundant in the study area (13 species), followed by Genus Oscillatoria (9 species) and Genus Navicula (7 species). Nostoc muscorum and Chlorella vulgaris were the most common and recorded in all sites (100% of the locations) under study. The application of the two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis revealed agglomerating of 4 groups (communities) at 4th level of classification and reasonable segregation between these groups. Zinc, cadmium and lead were showed the highest levels (0.26±0.03, 0.26±0.06, and 0.17±0.01 ppm, respectively). Conclusions: The correlation analysis between water and community variables indicated a high negative correlation of total algae richness with nickel (r = -0.936, p < 0.01). Cyanophyta and Bacillariophyta were correlated negatively (r = -0.842, p < 0.01). However, Chlorophyta showed a negative richness with each of Ni and Pb (r = -0.965, -0.873, respectively) on one hand and a high positive correlation was revealed (r = 0.964) with all environmental variables on the other hand.

Isolation of an Algal Growth-enhancer Polysaccharide from the Chlorophyta Monostroma nitidum

  • Cho, Ji-Young;Luyen Hai Quoc;Khan Mohammed N.A.;Shin, Hyun-Woung;Park, Nam-Gyu;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.115-117
    • /
    • 2006
  • A micro algal growth-enhancing polysaccharide compound was isolated from the green alga Monostroma nitidum using water extraction, molecular fractionation, a DEAE-cellulose column, and fast protein liquid chromatography using a Superose-12 column. The yield of the compound from the seaweed powder was 8.3$\times$l0$^{-3}$%. At 2 mg/mL concentration, the polysaccharide enhanced Tetraselmis suecica cell growth in f/2 medium by approximately 160%.

Axenic Culture of Gyrodinium impudicum Strain KG03, a Marine Red-tide Microalga that Produces Exopolysaccharide

  • Yim Joung Han;Lee Hong Kum
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.305-314
    • /
    • 2004
  • An exopolysaccharide-producing microalgal dinoflagellate was isolated from a red-tide bloom and des­ignated strain KG03. A bacteria-free culture of strain KG03 was achieved using a modified wash with phototaxis and antibiotic treatment. Combined treatment with neomycin and cephalosporin was the most effective for eliminating the bacteria associated with the microalgae. Strain KG03 was identified as Gyrodinium impudicum by analyzing the ITS regions of the 5.8S rDNA, 18S rDNA, morphological phenotype and fatty acid composition. The exopolysaccharide production and cell growth in a 300-ml photobioreactor were increased 2.7- and 2.4-fold, respectively, compared with that in a flask culture at the first isolation step.

Phytoplankton of the Coastal Waters of Vladivostok (the North-western Part of the East Sea) under Eutrophic Conditions

  • Stonik, I.V.;Orlova, T.Yu.
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.359-365
    • /
    • 2002
  • The qualitative and quantitative composition of the phytoplankton of the coastal waters off Vladivostok during the period 1991-1994 was studied. The following trends in the phytoplankton composition with decreasing distance from the source of eutrophication were revealed: 1) total density and bio-mass increased; 2) the density of the diatom Skeletonema costatum, which reflects a decrease in the Shannon-Weaver species diversity index during the summer microalgal bloom, increased significantly; and 3) the density of the non-diatom component of the phytoplankton increased.

A Taxonomic Study of Family Dinophysiaceae Stein (Dinophysiales, Dinophyta) in Korean Coastal Waters

  • Shin, Eun-Young;Park, Jong-Gyu;Yeo, Hwan-Goo
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.655-668
    • /
    • 2004
  • A taxonomic survey of the dinoflagellate family Dinophysiaceae Stein was conducted on 17 locations off the coast of Korea. A total of twelve species have been identified and described, of which eight species, Dinophysis dens Pavillart D. infundibulus Schiller, D. irregulare Lebour, D. lapidistrigiliformis Abe, D. mitra(Schutt) Abe vel Balech, D. parvula(Schutt) Jorgensen, D. rapa(Stein) Balech, Phalacroma sphaeroideum Schiller, are new records for Korea and six are potentially toxic.

Dairy wastewater treatment using microalgae for potential biodiesel application

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2016
  • The aim of this study was to evaluate the biomass production and dairy wastewater treatment using Chlorella vulgaris. The results indicated that the maximum percentages of biochemical oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus removed were 85.61%, 80.62%, 29.10%, 85.47%, and 65.96%, respectively, in dairy effluent at 10 d. A maximum of 1.23 g/L dry biomass was obtained in 7 d. The biomass productivity was strongly influenced by the nutrient reduction in the dairy effluent. The biodiesel produced by the C. vulgaris in the dairy effluent was in good agreement with the American Society of Testing and Materials-D6751 and European Standards 14214 standards. Therefore, using dairy effluent for microalgal cultures could be a useful and practical strategy for an advanced, environmentally friendly treatment process.

Effect of Nutrient Limitation on Lipid Content and Fatty Acid Composition of Mutant Chlamydomonas reinhardtii (돌연변이 Chlamydomonas reinhardtii의 영양분 제한에 따른 지질 생산 및 지방산 조성 변화 연구)

  • Baek, Jaewon;Choi, Jong-il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.91-95
    • /
    • 2015
  • Production of biodiesel from microalgae is dependent on the microalgal lipid content and free fatty acid composition. Both lipid and free fatty acid are regulated by nutrient sources. In this study, newly developed mutant Chlamydomonas reinhardtii with higher lipid content was investigated for the effect of nutrient limitation. Nitrogen $NO_3{^{-}}$ and phosphate $PO_4{^{3-}}$ were limited for nutrient starvation during the cultivation. Under nutrient starvation, total lipid content level was increased to 27~33% and C16:0 fatty acid content constituted over 31~43% of total fatty acid. Interestingly, we also found that the expression of fatty acid desaturase (FAD7) was decreased when nutrients were starved.

Genetic Relationships among Multiple Strains of the Genus Tetraselmis Based on Partial 18S rDNA Sequences

  • Lee, Hye-Jung;Hur, Sung-Bum
    • ALGAE
    • /
    • v.24 no.4
    • /
    • pp.205-212
    • /
    • 2009
  • Molecular genetic tools are widely used to learn more about the identical characterization of obscure microalgal strains. At the Korea Marine Microalgae Culture Center (KMMCC), the authors deduced the genetic relationship of 41 strains of the genus Tetraselmis by analysing a small subunit ribosomal DNA (18S rDNA) sequences. Forty-one strains were seperated into five groups, which showed over a 98-99% similarity to Tetraselmis striata or Tetraselmis sp. Tsbre. Also, 13 strains among them had an identical genotype to Tetraselmis striata while 5 strains had with Tetraselmis sp. Tsbre, respectively. The mean size of each strain generally showed the tendency of different variation according to the groups.