• Title/Summary/Keyword: Micro-structure properties

Search Result 563, Processing Time 0.031 seconds

Design of Vertical Type MEMS Probe with Branch Springs (분기된 구조를 갖는 수직형 MEMS 프로브의 설계)

  • Ha, Jung-Rae;Kim, Jong-Min;Kim, Byung-Ki;Lee, June-Sang;Bae, Hyeon-Ju;Kim, Jung-Yup;Lee, Hak-Joo;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.831-841
    • /
    • 2010
  • The conventional vertical probe has the thin and long signal path that makes transfer characteristic of probe worse because of the S-shaped structure. So we propose the new vertical probe structure that has branch springs in the S-shaped probe. It makes closed loop when the probe mechanically connects to the electrode on a wafer. We fabricated the proposed vertical probe and measured the transfer characteristic and mechanical properties. Compared to the conventional S-shaped vertical probe, the proposed probe has the overdrive that is 1.2 times larger and the contact force that is 2.5 times larger. And we got the improved transfer characteristic by 1.4 dB in $0{\sim}10$ GHz. Also we developed the simulation model of the probe card by using full-wave simulator and the simulation result is correlated with measurement one. As a result of this simulation model, the cantilever probe and PCB have the worst transfer characteristic in the probe card.

Properties of CaO added MgO Sintering at High Pressure and Low Temperatures (CaO 첨가된 MgO의 고압 저온 소결 조건에 따른 물성연구)

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4185-4190
    • /
    • 2013
  • We executed the property changes of the sintered MgO (99.9% purity, 300nm size) specimens with addition to CaO content of 0.00wt%, 0.25wt%, and 0.50wt%, processed at 7GPa, for 5min, 600~$800^{\circ}C$. To investigate the micro-structure and physical property changes of the sintered MgO(-CaO), we employed a scanning electron microscopy(SEM), X-ray diffractomerty(XRD), Vickers hardness, and density. The SEM result showed that MgO powder of 300nm size was changed into sintered structure of 520nm by high pressure and low temperature sintering, regardless of the CaO contents. According to the XRD analysis, no CaO phase observed, while MgO peaks shift indicated the existence of CaO in the MgO matrix. The Vickers hardness result showed that hardness of sintered MgO-CaO increased by 12% compared pure MgO under the same temperature conditions. It implied that we can obtain the same hardness with $100^{\circ}C$ lowered sintering temperatures by addition of CaO. The density results showed that it was possible to obtain density of 98%, which is 5% greater than that of pure MgO at low temperature of $600^{\circ}C$.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Effect of the A-site Deficieny of ABO3 type (La0.75Sr0.25)1-xFeO3-δ Used as Cathode Materials for SOFC on the Electrode Properties (고체산화물 연료전지의 공기극용 ABO3구조의 (La0.75Sr0.25)1-xFeO3-δ의 A-site변화에 따른 전극 특성 연구)

  • Park, Ju-Hyun;Lee, Seung-Bok;So, Hui-Jeong;Lim, Tak-Hyoung;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • We synthesized and investigated $(La_{0.75}Sr_{0.25})_{1-x}FeO_{3-\delta}$ perovskite oxides having different stoichiomety (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The electrochemical performances of the synthesized powders were investigated by AC impedance spectroscopy. Both the electric conductivity and the electrochemical performance showed the highest properties at the stoichiometry x = 0.02. Finally, we concluded that the variation of A-site deficiency results in the variation of the amount of oxygen vacancy and micro structure, which leads to the variation of electric conductivity and polarization resistance.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Nondestructive investigation of clay wall structure containing traditional mural paintings. - The clay walls having mural paintings housed in the protective building in Muwisa Temple, Kangjin, Jeollanamde Province - (전통 벽화의 토벽체 비파괴진단 조사연구 - 강진 무위사 벽화보존각내 벽화를 중심으로 -)

  • Chae, Sang-Jeong;Yang, Hee-Jae;Han, Kyeong-Soon
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.51-62
    • /
    • 2006
  • This study, in order to do a nondestructive research on the mural walls kept in the protective house in Muwisa Temple, Kangjin, took four examinations; particle size analysis, XRD analysis, ultrasonic investigation, and thermo-infrared investigation. Component ratio of mural wall varied; clay of wall bodies consisted of gravel of 1.78 g, sand of 5.39 g, silt of 4.91 g and clay of 6.26 g. Ultrasonic velocity and one-axis compression strength tests done with eight mural-painted walls yield results as follows; the value of ultrasonic velocity ranged between 71.63 and 3610.11 m/s with the average of 417.44 m/s and on-axis compression strength ranged between 70.34 and $533.28kg/cm^2$ with the average of $83.23kg/cm^2$. The value increased in the order of Bosaldo(No.6)

  • PDF

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

A study on the fabrication of $Pb(Fe^{0.5},Nb^{0.5}O_3$ thin films by a Co-sputtering technique and their characteristics properties (동시 스퍼터링법에 의한$Pb(Fe^{0.5},Nb^{0.5}O_3$박막의 제조 및 특성 평가에 대한 연구)

  • 이상욱;신동석;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • $Pb(Fe_{0.5}Nb_{0.5}O_3(PFN)$ thin films were prepared by rf magnetron co-sputtering method on $SiO_2/Si$, ITO/glass, and $Pt/Ti/SiO_2/Si$ substrates and post-annealed at the $N_2$ atmosphere by RTA(rapid thermal annerling). The degree of crystallinity of PFN films was identified on various substrates. Electrical properties of PFN films was characterized for $Pt/PFN/Pt/Ti/SiO_2/Si$ structure. The composition of PFN films was estimated by EPMA (electron probe micro analysis). PFN films would be crystallized better to perovskite phase on ITO/glass substrate than $SiO_2/Si$ substrate. This may be induced by the deformation of Pb deficient pyrochlore phase due to Pb diffusion into $SiO_2/Si$ substrate. PFN films on $Pt/Ti/SiO_2/Si$ substrate. PFN films with 5-10% Pb excess were crystallized to perovskite phase from $500^{\circ}C$ temperature. In summary, we show that Pb composition and annealing temperature were critically influenced on crystallinity to perovskite phase. When PFN film with 17% Pb excess was annealed at $600^{\circ}C$ at the $N_2$ atmosphere for 300kV/cm and 88. Its remnant polarization coercive field $2.0 MC/cm^2$ and 144kV/cm, respectively.

  • PDF

A Study on Microstructure and Mechanical Properties of Modified 9Cr-1Mo and 9Cr-0.5Mo-2W Steels for nuclear Power Plant (원자력용 개량 9Cr-1Mo 및 9Cr-0.5Mo-2W 강의 미세조직과 기계적 특성 연구)

  • Kim, Seong-Ho;Song, Byeong-Jun;Han, Chang-Seok;Guk, Il-Hyeon;Ryu, U-Seok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1137-1143
    • /
    • 1999
  • Microstructure and mechanical properties of Mod.9Cr-1Mo and W added 9Cr-0.5Mo2W steels were investigated for liquid metal reactor (LMR) heat exchange tube. The tempering temperatures at which cell structure was formed were $700^{\circ}C$ for Mod.9Cr-1Mo steel and $750^{\circ}C$ for W added 9Cr0.5Mo-2W steel. indicating the recovery of dislocation was delayed by the addition of W. 9Cr-0.5Mo-2W steel had the same kinds of precipitates with Mod.9Cr-1Mo steel, but the W was included in the precipitates in 9Cr-0.5Mo-2W steel. Micro-hardness and ultimate tensile strength of 9Cr-0.5Mo-2W steel were higher than those of Mod.9Cr-1Mo steel. The impact property of Mod.9Cr-1Mo steel was superior to that of 9Cr-0.5Mo-2W steel.

  • PDF