DOI QR코드

DOI QR Code

Properties of CaO added MgO Sintering at High Pressure and Low Temperatures

CaO 첨가된 MgO의 고압 저온 소결 조건에 따른 물성연구

  • Song, Jeongho (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 송정호 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2013.05.13
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

We executed the property changes of the sintered MgO (99.9% purity, 300nm size) specimens with addition to CaO content of 0.00wt%, 0.25wt%, and 0.50wt%, processed at 7GPa, for 5min, 600~$800^{\circ}C$. To investigate the micro-structure and physical property changes of the sintered MgO(-CaO), we employed a scanning electron microscopy(SEM), X-ray diffractomerty(XRD), Vickers hardness, and density. The SEM result showed that MgO powder of 300nm size was changed into sintered structure of 520nm by high pressure and low temperature sintering, regardless of the CaO contents. According to the XRD analysis, no CaO phase observed, while MgO peaks shift indicated the existence of CaO in the MgO matrix. The Vickers hardness result showed that hardness of sintered MgO-CaO increased by 12% compared pure MgO under the same temperature conditions. It implied that we can obtain the same hardness with $100^{\circ}C$ lowered sintering temperatures by addition of CaO. The density results showed that it was possible to obtain density of 98%, which is 5% greater than that of pure MgO at low temperature of $600^{\circ}C$.

본 연구에서는 불순물 첨가에 따른 MgO의 소결에 대한 물성변화를 확인하고자 99.9%순도, 300nm크기의 MgO 파우더에 고순도의 CaO를 0wt%, 0.25wt%, 0.50wt% 첨가하여 7GPa의 초고압 하에서 각각 $600^{\circ}C$~$800^{\circ}C$로 5분간 소결을 진행하였다. MgO(-CaO) 소결체의 미세구조와 기계적 물성 변화 확인을 위해 scanning electron microscopy(SEM), X-ray diffractometry(XRD), Vickers 경도, 밀도 측정을 진행하였다. SEM 분석 결과 처리전 300nm 의 MgO 응집체는 $800^{\circ}C$ 고압소결 후 CaO첨가와 관련 없이 모두 약 520nm 입도의 소결체가 되었다. XRD 분석결과 CaO상 자체는 확인할 수 없었으나 CaO고용에 따른 MgO 피크의 쉬프트에 의해 CaO의 존재를 확인할 수 있었다. 비커스 경도치 확인결과 CaO를 첨가하지 않은 MgO 소결체에 비해 동일 온도조건에서 약 12% 증가하였으며 비슷한 경도치를 얻기 위해 소결온도를 약 $100^{\circ}C$이상 낮출 수 있었음을 확인할 수 있었다. 밀도 측정결과 $600^{\circ}C$의 낮은 온도조건 하에서도 CaO를 첨가하지 않은 MgO 소결체에 비해 약 5%이상 증가한 98%이상의 효과적인 소결밀도를 얻을 수 있었다.

Keywords

References

  1. K. D. Kim, Y. D. Kim, S. W, synthesis of Micromesoporous Magnesium Oxide Cubes with Nanograin Structures in a Supercritical Carbon Dioxide/Ethanol Solution, Journal of Nanoscience and Nanotechnology, 11 [7] 5823-8 (2011) DOI: http://dx.doi.org/10.1166/jnn.2011.4400
  2. A. Kamitani, H. Wakana, S. Adachi, Y. Nakajima, K. Higuchi, H. Yamamoto, K. Tanabe, Examination of MgO Insulator Thin Films for High-Tc Superconducting devices, Physica C, 426-431, 2, pp.1502-1507, 2005. https://doi.org/10.1016/j.physc.2005.02.117
  3. A. Krell, K. Waetzig, J. Klimke, Influence of the Structure of MgO.nAl2O3 Spinel Lattices on Transparent Ceramics Processing and Properties, J. Eur. Ceram. Soc.., 32, pp.2887-2898, 2012. DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2012.02.054
  4. V. Lupei, A. Lupei, A. Ikesue, Transparent Polycrystalline Ceramic Laser Materials, Optical Materials, 30, pp.1781-1786, 2008. DOI: http://dx.doi.org/10.1016/j.optmat.2008.03.003
  5. T. R. Hinklin, S. C. Rand, R. M Laine, Transparent, Polycrystalline Upconverting Nanoceramics: Towards 3-D Displays, Advanced Materials, 20 pp.1-4 (2008). DOI: http://dx.doi.org/10.1002/adma.200701235
  6. T. Yanagidaa, T. Itoha, H. Takahashia, S. Hirakuria, M. Kokubuna, K. Makishimaa, M. Satoa, T. Enotoa, T. Yanagitanic, H. Yagic, T. Shigetadd, T. Ito, Improvement of ceramic YAG(Ce) scintillators to $(YGd)_3Al_5O_{12}(Ce)$ for gamma-ray detectors, Nuclear Instruments and Methods in Physics Research A, 579, pp.23-26, 2007. DOI: http://dx.doi.org/10.1016/j.nima.2007.04.173
  7. M. Toshihiko, M. Yusuke, Y. Yoshituki, T. Satoshi, I. Takayasu, Effect of Silica and Boron Oxide on Transparency of Magnesia Ceramics, Journal of the Ceramic Society of Japan, 107, 1244, pp.343-348, 1999. DOI: http://dx.doi.org/10.2109/jcersj.107.343
  8. D. Chen, E. H. Jordan, M. Gell, Pressureless Sintering of Translucent MgO Ceramics, Scripta Materialia, 29, pp.757-759, 2008. DOI: http://dx.doi.org/10.1016/j.scriptamat.2008.06.007
  9. Y. Fang, D. Agrawal, G. Skandan, M. Jain, Fabrication of translucent MgO ceramics using nanopowders, Materials Latters, 58, pp.551-554, 2004. DOI: http://dx.doi.org/10.1016/S0167-577X(03)00560-3
  10. K. Itatani, T Tsujimoto, A. Kishimoto, Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing, J. Eur. Ceram. Soc., 26, 4-5, pp.639-645, 2004.
  11. T. B. Tran, S. Hayun, A. Navrotsky, R. H. R. Castro, transparent nanocrystalline pure and Ca-Doped MgO by spark plasma sintering of anhydrous nanoparticles, J. Am. Ceram Soc., 95, 4, pp.1185-1188, 2012. DOI: http://dx.doi.org/10.1111/j.1551-2916.2012.05103.x
  12. J. H. Song, Y. Y. Noh, O. S. Song, Property of MgO with Different Sintering Temperatures under High Pressures, Journal of the Korean Ceramic Society, 49, 6 pp.608-613, 2012. DOI: http://dx.doi.org/10.4191/kcers.2012.49.6.608
  13. Ames S. Reed, Principles of Ceramics Processing : Second edition, John Wiley & Sons, INC., NewYork, pp.118-121, 1995.
  14. P. Wu, G. Eriksson, A. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-FeO, CaO-MgO, CaO0MnO, FeO-MgO, FeO-MnO, and MgO-MnO Systems, J. Am. Ceram Soc., 76, 8, pp.2065-2075, 1993. DOI: http://dx.doi.org/10.1111/j.1151-2916.1993.tb08334.x