• Title/Summary/Keyword: Micro-pyramid pattern

Search Result 17, Processing Time 0.029 seconds

The Development of a machining technology on the micro needle pattern with a quadrangular pyramid or cone shapes (사각뿔/원뿔 형상의 마이크로 니들 가공 기술 개발)

  • Choi, Kyu-Wan;Chang, Sung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.25-29
    • /
    • 2016
  • Recently, a hyaluronic acid micro needle patch for therapeutic and cosmetic purposes has been used by attaching directly to the skin with a pattern having a micro needle shape of 1/3 thickness of hair. These products are attracting attention as an innovative product that maximizes the effect by activating the active ingredient in the skin in the deep skin without blocking the horny layer because the micro needle shape exists on the patch surface so that it can penetrate effectively to the skin. Currently, DAB (droplet air blowing) or MEMS technology is used to make pattern shapes for patches. Because of this technology, manufacturing time is long and manufacturing cost is high, so we tried to develop the mold technology to machine the microneedle shape directly to the metal. In this study, we first fabricated a needle pattern with a quadrangular pyramid shape and finally produced a conical needle pattern.

A study on fabrication of a micro patterned LGP (미세 패턴 응용 도광판 제작에 관한 연구)

  • Yoo Y.E.;Kim T.H.;Kim S.G.;Seo Y.H.;Je T.J.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.533-534
    • /
    • 2006
  • Micro pyramid pattern and its array are designed to enhance the brightness and its uniformity of LGP which is one of key parts in LCD. The designed micro pyramid patterns are fabricated on a Si-wafer first through MEMS process and then a Ni-stamper is electro-plated from the Si pattern master. Adopting the fabricated Ni-stamper, LGPs are injection molded at different mold temperatures and the fidelity of the pattern replication is estimated for each molding conditions and pattern locations. The replicated patterns are found to have some defect such as local short shot or micro weld line which are believed to have negative effect on the performance of the LGP.

  • PDF

Machining Process for Micro Pyramid Pattern Mold (미세 피라미드 패턴 금형 가공공정 연구)

  • Je, T.J.;Shin, Y.J.;Lee, E.S.;Choi, D.S.;Hong, S.M.;Kang, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.55-59
    • /
    • 2007
  • Technologies of super-precision micro pattern mold machining and high-performance optical films manufacturing using thereof forms the basis of recent display industries which have developed remarkably. Especially, it is the light guide plates and high luminous intensity prism sheets at BLU or FLU in LCD and lenses at virtual keyboard's display to be manufactured by micro machining technology. One way the industry requires to do that is by developing high-performance light guide plates or films which are existing light guide plates, diffusion films and luminance enhancement prism films all in one. In this research effort, basic processing of the micro pyramid structure by shaping method is proposed. Experiments of mold machining of pitch $20{\mu}m$ tetrahedral pyramid and pitch $100{\mu}m$ trihedral pyramid using a $90^{\circ}$ diamond tool were conducted to identify a variety of machining features, such as cutting forces, conditions of the surface, shapes of chips, and influence of materials.

  • PDF

Fabrication of Ni Stamper based on Micro-Pyramid Structures for High Uniformity Light Guide Panel (LGP) (마이크로 피라미드 패턴 응용 도광판 제작을 위한 니켈 스탬퍼 제작에 관한 연구)

  • Kim, Seong-Kon;Yoo, Yeong-Eun;Seo, Young-Ho;Jae, Tae-Jin;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.174-178
    • /
    • 2006
  • Pyramid shape of micro pattern is applied to the light guide panel (LGP) to enhance the uniformity of the brightness of the LCD. The micro pyramids are molded in intaglio on the surface of the LGP. The size of each pyramid is 5$\mu$m $\times$ 5$\mu$m on bottom and the height is about 3.5$\mu$m. The pyramids are distributed on the LGP surface randomly to be sparser where the light comes in and denser at the opposite side as a result of a simulation using lightools$^{TM}$ Based on this design, a silicon pattern master and a nickel stamper are fabricated by MEMS process and electro plating process. Intaglio micro pyramids are fabricated on the 6' of silicon wafer from the anisotropic etching using KOH and the process time, temperature of the KOH solution, etc are optimized to obtain precise shape of the pattern. A Wi stamper is fabricated from this pattern master by electro plating process and the embossed pyramid patterns turns out to be well defined on the stamper. Adopting this stamper to the mold base with two cavities, 1.8' and 3.6' LGPs are injection molded.

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

Development of Micro Pattern Cutting Simulation Software (미세패턴 가공 시뮬레이션 기술 개발)

  • Lee, Jong-Min;Le, Duy;Kim, Su-Jin;Lee, Seok-Woo;Je, Tae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.218-223
    • /
    • 2009
  • The micro pattern machining on the surface of wide mold is not easy to be simulated by conventional software. In this paper, a software is developed for micro pattern cutting simulation. The 3d geometry of v-groove, rectangular groove, pyramid and pillar patterns are visualized by C++ and OpenGL library. The micro cutting force is also simulated for each pattern.