• 제목/요약/키워드: Micro-pressure Wave

검색결과 101건 처리시간 0.031초

정재초음파를 이용한 유동중 미세 입자 위치 제어 (Position Control of Micro Particles in a Fluid Flow Using Ultrasonic Standing Wave)

  • 조승현;서대철;안봉영;김기복;김용일
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.131-136
    • /
    • 2008
  • 정재초음파를 이용하면 유체에 잠겨 있거나 유체를 따라서 흐르는 미세 입자의 조작이 가능하다. 정재초음파 장이 입자에 힘을 작용하여 입자를 음압마디 또는 반음압마디로 이동시킨다. 본 연구에서는 정재초음파의 주파수를 조정함으로써 유동 중 미세 입자의 위치를 제어하는 방법을 제안하고자 한다. 이를 위해 먼저 수침형 초음파 트랜스듀서를 이용하여 폭 수 밀리미터의 미세 채널을 가지는 정재초음파 발생시스템을 구성하였다. 제안한 발생시스템을 이용하여 주파수 2 MHz부터 2.5 MHz까지 영역에서 정재초음파 장을 발생시키고, 물을 따라 흐르는 수 마이크로미터 내외의 탄화규소 입자가 음압 마디로 잘 이동함을 확인하였다. 이때, 미세 채널의 폭과 주파수가 입자의 거동에 미치는 영향을 관찰하였으며, 주파수가 미세입자의 이동 위치를 결정하는 중요한 파라미터임을 확인하였다. 결과적으로, 초음파의 주파수를 조정함으로써 입자의 이동 위치를 제어할 수 있음을 실험을 통해 확인하였으며 최대 범위는 약 261 마이크로미터이다. 본 연구로부터 유체내의 입자 조작에 있어서 정재초음파의 다양한 응용 가능성을 확인할 수 있었다.

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

광섬유를 이용한 음파탐지기의 제작 (Fiber-Optic Sensor for Acoustic Waves)

  • 유회준;이경목;황준암
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1983년도 추계학술발표회논문집
    • /
    • pp.44-47
    • /
    • 1983
  • Through intensity modulation induced by micro bending of an optical fiber, a sensor detects the pressure and frequency of acoustic wave has been implemented. Axial slots on the cylinder suface with a period of 5.5 mm induce efficient microbending of the fiber, and a rubber sleeve covering the fiber enhances the fiber. Compared with a conventional hydrophone, it has a low minimum detectable pressure and can detect acoustic wave in 100Hz - 2KHz range.

  • PDF

Design of a Valveless Type Piezoelectric Pump for Micro-Fluid Devices

  • Kim, Hyun-Hoo;Oh, Jin-Heon;Yoon, Jae-Hun;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.65-68
    • /
    • 2010
  • The operation principle of a traveling wave rotary type ultrasonic motor can be successfully applied to the fluidic transfer mechanism of the micro-pump. This paper proposes an innovative valveless micro-pump type that uses an extensional vibration mode of a traveling wave as a volume transportation means. The proposed pump consists of coaxial cylindrical shells that join the piezoelectric ceramic ring and metal body, respectively. In order to confirm the actuation mechanism of the proposed pump model, a numerical simulation analysis was implemented. In accordance with the variations in the exciting wave mode and pump body dimension, we analyzed the vibration displacement characteristics of the proposed model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its performance. The maximum flow rate was approximately $595\;{\mu}L/min$ and the highest back pressure was 0.88 kPa at an input voltage of $130\;V_{rms}$. We confirmed that the peristaltic motion of the piezoelectric actuator was effectively applied to the fluid transfer mechanism of the valveless type micro pump throughout this research.

알루미늄 플랩 밸브와 상변화 구동 마이크로 펌프의 제작 (The fabrication of a micro pump with a flap valve and a phase change actuator)

  • 이상우;심우영;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1023-1025
    • /
    • 1998
  • This paper presents the fabrication of a micro pump consisting of a pair of Al f1ap wave and a phase change actuator. The phase change actuator is composed of a heater, a silicone rubber diaphragm and a working liquid chamber. The diaphragm is actuated by the evaporation and the condensation of the working liquid. The actuator pumps fluid through the valves. The micro pump is fabricated by the anisotropic etch, the boron deposition and the metal evaporation. The forward and the backward flow characteristics of the f1ap valves were obtained. Also, the flow rate of the micro pump has been measured. When the square wave input of 12 V, 60% duty ratio and 0.2 Hz is applied, the average flow rate is $0.15{\mu}{\ell}/sec$ for zero pressure difference.

  • PDF

압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석 (Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios)

  • 권순덕;김성초;김정수;최종욱;김용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

고속열차의 터널 주행시 실외 압력 변화 및 미기압파 저감을 위한 수치해석적 연구 (Numerical Study of Reduction of External Pressure Variation and Micro-Pressure Wave for high-speed train in tunnel)

  • 이정욱;윤수환;곽민호;이동호;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.158-164
    • /
    • 2011
  • When a train passes a conventiaonl tunnel at high speed, external pressure variation problem arises. It is known that this issue can be reduced by control the tunnel length. We studied the variances of external pressure variation within the tunnel, by altering length of the dummy tunnel duct. We also studies the variances of micro-pressure waves at the exit of tunnel, by altering surface area of dummy tunnel duct. For analyzing this train-tunnel relation problem, axisymmetric steady compressible flow solver was used.

  • PDF

고속열차의 터널 진입시 발생하는 압력변화에 대한 수치 해석적 연구 (A Numerical Study on the Pressure Variation in the Tunnel Entrance of High Speed Train)

  • 이호석;김동현
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.309-317
    • /
    • 2018
  • Sudden pressure changes caused by the high-speed train entering the entrance of the tunnel are propagated into the tunnel and spread out around the tunnel in the form of a micro pressure wave at the exit of the tunnel. This phenomenon can cause noise and vibration around the tunnel, causing damage to the surroundings. Analysis of this phenomenon is very difficult, but the development of analytical technology has revealed more phenomena than in the past. In this study, we propose this method of analysis and compare it with the experimental data to show the data with higher reliability.

고속전철의 터널입구 형상이 공력특성 및 터널입구 압축파에 미치는 영향 (Effect of Tunnel Entrance Shape of High Speed Train on Aerodynamic Characteristics and Entry Compression Wave)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.111-118
    • /
    • 2004
  • The work presented in this paper concerns the aerodynamic characteristics and compression wave generated in a tunnel when a high speed train enters it. A large number of solutions have been proposed to reduce the amplitude of the pressure gradient in tunnels and some of the most efficient solutions consist of (a) addition ofa blind hood, (b) addition of inclined part at the entrance, and (c) holes in the ceiling of the tunnel. These are numerically studied by using the three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, based on FEM method. Computational results showed that the smaller inclined angle leads to the lower pressure gradient of compression wave front. This study indicated that the most efficient slant angle is in the range from $30^{\circ}$ to $50^{\circ}$. The maximum pressure gradient is reduced by $26.81\%$ for the inclined angle of $30^{\circ}$ as compared to vertical entry. Results also showed that maximum pressure gradient can be reduced by $15.94\%$ in blind hood entry as compared to $30^{\circ}$ inclined tunnel entry. Furthermore, the present analysis showed that inclined slant angle has little effect on aerodynamic drag. Comparison of the pressure gradient between the inclined tunnel hood and the vertical entry with air vent holes indicated that the optimum inclined tunnel hood is much more effective way in reducing pressure gradient and increasing the pressure rise time.

한국형 틸팅 열차 주위 유동장 수치 해석 (The Numerical Analysis off the Flow-field Around the Korean Tilting Train Express)

  • 윤수환;김태윤;고태환;권혁빈;이동호
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.193-199
    • /
    • 2004
  • Numerical analysis of aerodynamic characteristics was differently performed according to the running situation of the Korean Tilting Train eXpress(TTX) that would be introduced for an improvement in efficiency of the used railroad track. Fluent 6.0 was used for the analysis of Non-tilting case, Tilting case and Passing-by case with the model of TTX. As a result, the aerodynamic drag had little difference between Tilting and Non-tilting case. However, pressure contour under the train of Tilting case was not symmetry because the gap between a train and the ground was different at both sides. In Passing-by case attraction and counterattraction occurred alternately and affected to the opposite train. When two trains were side by side, the maximum attraction was generated especially. Through an analysis of pressure wave in tunnel a large variation of pressure was generated by the bluff nose of TTX. The results in this study would be good data for the aerodynamic characteristic on TTX and provide important information to judgment of running safety.