• 제목/요약/키워드: Micro-nano fabrication technique

검색결과 49건 처리시간 0.03초

나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구 (Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process)

  • 박상후;임태우;양동열
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

Fabrication of Micro/Nano-patterns using MC-SPL(Mechano-Chemical Scanning Probe Lithography) Process

  • Sung, In-Ha;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권5호
    • /
    • pp.22-26
    • /
    • 2003
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

미세탐침기반 기계-화학적 리소그래피공정에 의한 마이크로/나노패턴 제작 (Fabrication ofMicro/Nano-patterns using MC-SPL (Mechano-Chemical Scanning Probe Lithography) Process)

  • 성인하;김대은
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.228-233
    • /
    • 2002
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Additive Process Using Femto-second Laser for Manufacturing Three-dimensional Nano/Micro-structures

  • Yang, Dong-Yol;Lim, Tae-Woo;Son, Yong;Kong, Hong-Jin;Lee, Kwang-Sup;Kim, Dong-Pyo;Park, Sang-Hu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.63-69
    • /
    • 2007
  • The two-photon stereolithography (TPS) process is a promising technique for the fabrication of real three-dimensional (3D) nano/micro-structures via application of a femto-second laser, In TPS, when a near-infrared ultrashort-pulsed laser is closely focused onto a confined volume of photocurable resin, only the local area at the center of the focus is cured. Therefore, real 3D microstructures with resolution under the diffraction limit can be fabricated through a layer-by-layer accumulative technique, This process provides opportunities to develop neo-conceptive nano/micro devices in IT/BT industries, However, a number of issues, including development of effective fabrication methods, highly sensitive and functional materials, and neo-conceptive devices using TPS, must be addressed for the realization of industrial application of TPS. In this review article, we discuss our efforts related to TPS: effective fabrication methods, diverse two-photon curable materials for high functional devices, and applications.

Non-lithography 방법에 의한 마이크로 구조물 제작 및 응용 (Non-lithographic Micro-structure Fabrication Technology and Its Application)

  • 성인하;김진산;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.956-959
    • /
    • 2002
  • In this work, a new non-lithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photo-lithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

  • PDF

자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용 (Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication)

  • 성인하;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

나노 공정 개발을 위한 기계적 물성 측정 기법 (Measurement Techniques of Mechanical Properties for Development of Nano Fabrication Process)

  • 이학주;최병익;김완두;오충석;한승우;허신;김재현;고순규;안현균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1104-1110
    • /
    • 2003
  • There are many applications of nanostructures, have been suggested by lots of researchers. It is highly required to measure the properties of nano-sized materials for design and fabrication of the nanostructures. In this paper, several techniques for measuring the mechanical properties of nano-structures are presented laying emphasis on the activity of Nano Property Measurement Team in KIMM. Some advanced applications of nano-indenter are described for measuring elastic, visco-elastic, frictional and adhesive properties as well as the standard methods of it. Micro-tensile test technique with accurate in-plane strain measurement method is also presented and its role in the property measurement of nanostructures is discussed.

  • PDF

마이크로/나노 구조를 갖는 초발수성 표면의 제작 및 분사 액적의 충돌 특성 연구 (Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet)

  • 김형모;이상민;이찬;김무환;김준원
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.1020-1025
    • /
    • 2012
  • In this study, we fabricated the superhydrophobic and super-water-repellent surface with the micro/nano scale structures using simple conventional silicon wet-etching technique and the black silicon method by deep reactive ion etching. These fabrication methods are simple but very effective. Also we reported the droplet impact experimental results on the micro/nano-scaled surface. There are two representative impact behaviors as "rebound" and "fragmentation". We found the transition Weber number between "rebound" and "fragmentation" statements, experimentally. Additionally, we concerned about the dimensionless spreading diameters for our super-water-repellent surface. The novel characterization method was introduced for analysis including the "fragmentation" region. As a result, our super-water-repellent surface with the micro/nano-scaled structures shows the different impact behaviors compared with a reference smooth surface, by some meaningful experiments.