• Title/Summary/Keyword: Micro-heater

Search Result 159, Processing Time 0.023 seconds

Characteristics of Cooling for the Adjacent Double Micro-Porous Coated Surfaces in PE5060 (마이크로다공성 코팅된 인접 복수 발열체에 대한 PF5060의 냉각 특성)

  • Kim Tae-Gyun;Kim Yoon-Ho;Lee Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.646-655
    • /
    • 2006
  • The present research is an experimental study on characteristics of cooling behavior for the adjacent copper blocks with surface roughness or micro-porous coated surface. The experiments were carried out at saturation state or within subcooled states of PF5060. The effects of heater orientation and the intervals between heating surfaces or substrates were investigated under various heat flux conditions. The boiling performance of copper block with micro-porous coated surface was better than that of copper block with surface roughness. It is understood that the bubble sweeping enhances boiling performance for the heaters with inclinations of $\theta=45^{\circ}\;and\;\theta=90^{\circ}$, where as the bubble flattening decreases boiling performance for the heaters with inclinations of $\theta=135^{\circ}\;and\;\theta=180^{\circ}$. In comparison to upper heater and below heater with orientation, the upper heater has lower superheat temperature than the below heater due to the bubble sweeping. It is also found that boiling performance decreases in the case of adjacent double heaters with only 0.2cm substrate interval.

The Fabrication of Pt Micro Heater Using Aluminum Oxide as Medium Layer and Its Thermal Characteristics (알루미늄산화막을 매개층으로 이용한 백금 미세발열체의 제작과 발열특성)

  • 노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.331-334
    • /
    • 1997
  • The electrical and physical charateristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering, respectively, were analysed with increasing annealing temperature(400~80$0^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin finns was improved. But these properties of aluminum oxide and Pt thin finns on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. The thermal characteristics of Pt micro heater were analysed with Pt-RTD integrated on the same substrate. In the analysis of properties of Pt micro heater. active area was smaller size, Pt micro heater had better thermal characteristics. Temperature of Pt micro heater fabricated on membrane was up to 34$0^{\circ}C$ with 1.2watts of the heating power due to reduction of the external thermal loss.

  • PDF

Pre-processing for the Design of Micro-fluid Flow Sensing Elements

  • Kim Jin-Taek;Pak Bock-Choon;Lee Cheul-Ro;Baek B.J.
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.22-26
    • /
    • 2006
  • A simple finite element analysis is performed to simulate the thermal characteristics of a micro sensor package with thin film heater embedded in the glass wall of a micro-channel. In this paper, Electric characteristics of ITO sputtered heater were presented in this study, which can be used as a map of heater design in the range of available system temperature. The effects of thermo-physical properties of materials, geometrical structure and boundary condition on the thermal performance are also investigated. Finally, the design of micro-flow induced thermal sensor that is capable of measuring fluid flow with a lower flow detection limit of approximately 24pL/s is presented.

Design of Low Consume Power Ty7e Micro-heaters Using SOl and Trench Structures (SOI 및 TRENCH 구조를 이용한 저소비 전력형 미세발열체의 설계)

  • Jang, Soo;Hong, Seok-Woo;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.350-353
    • /
    • 1999
  • This Paper Presents the optimized design of micro-heaters using 501(Si-on-insulator) substrate and oxide-filled trench structure In order to justify a lumped model approximation and thermal boundary assumptions, two-dimensional FDM(finite difference among which conduction is the dominant heat dissipation path. Compared with no-trenchs on the SOI structure, the micro-heaters with trench structures has properties of low heater loss and good thermal isolation. The simulation results show that the heater loss decreases as the number. width and distance of trenchs increases.

  • PDF

Operation of PCR chip by micropump (마이크로펌프를 이용한 PCR Chip의 구동)

  • 최종필;반준호;장인배;김헌영;김병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.463-467
    • /
    • 2004
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated b micro-heater under pulse heating. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, he middle plate, the upper plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The middle plate includes the chamber and diaphragm d the upper plate is the micro-heater. The Micropump is fabricated by bonding process of the three layer. This paper resented the possibility of the PCR chip operation by the fabricated micropump.

  • PDF

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement (다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서)

  • Chung Wan-Young;Kim Tae-Yong;Seo Yong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

Bubble Nucleation and Behavior on Square Micro Heaters (사각 마이크로 히터위에서의 기포의 형성 및 거동)

  • Jung, Jung-Yeul;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1464-1469
    • /
    • 2004
  • In this study, micro square heaters having dimensions of $65{\times}65{\mu}m^2$and $100{\times}100{\mu}m^2$ were fabricated and bubble nucleation experiments on the heaters were performed. Bubble nucleation temperature was also measured using a bridge circuit and the photographs of bubble nucleation and subsequent growth were taken by a camera with a flash unit. Measured bubble nucleation temperatures were found to be closer to the superheat limit of working fluid (FC-72). Also quasi-1D analyses for the square heaters were performed. The quasi-1D analysis yielded proper temperature distribution of the square heater at steady state, however failed to predict the temperature rise up to the steady state. Similar time dependent temperature can be obtained with proper value of thermal diffusivity. For the $100{\times}100{\mu}m^2$ square heater, nucleation of several bubbles was observed while only one bubble was observed to be nucleated on $65{\times}65{\mu}m^2$ heater.

  • PDF

Design fabrication and characteristics of 3C-SiC micro heaters for high temperature, high powers (고온, 고전압용 SiC 마이크로 히터 설계, 제작 및 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.113-113
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on $AlN(0.1{\mu}m)/3C-SiC(1.0{\mu}m)$ suspended membranes by surface micro- machining technology. The 3C-SiC and AlN thin films which have wide energy bandgap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3C-SiC RTD (resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR (thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 $ppm/^{\circ}C$ within a temperature range from $25^{\circ}C$ to $50^{\circ}C$ and -1040 $ppm/^{\circ}C$ at $500^{\circ}C$. The micro heater generates the heat about $500^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

  • PDF

Fabrication of 3C-SiC micro heaters and its characteristics (3C-SiC 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.311-315
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on AlN(0.1 $\mu$m)/3C-SiC(1.0 $\mu$m) suspended membranes by surface micro-machining technology. The 3C-SiC and AlN thin films which have wide energy band gap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3CSiC RTD(resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR(thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 ppm/$^{\circ}C$ within a temperature range from 25 $^{\circ}C$ to 50 $^{\circ}C$ and -1040 ppm/$^{\circ}C$ at 500 $^{\circ}C$. The micro heater generates the heat about 500 $^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than Pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.