• Title/Summary/Keyword: Micro-hardness

Search Result 731, Processing Time 0.033 seconds

Al-7020의 Pulse-GMA용접에 관한 연구 2

  • 김재웅;허장욱;나석주;백운형
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.54-62
    • /
    • 1988
  • Major problems in welding Al-7020 include shrinkage, rpopositgy in welds and loss of strength in the heat affected zone. Thus it is important to examine the mechanical properties and reliability of welds. In this study, a series of experiments was carried out to determine the mechanical properties such as micro-hardness distribution, tensile strength, porosity and residual stress distribution of the Al-7020 weldment made by pulse-GMA welding. The resuts of the experiemnts are as folows. 1) The micro-hardness of weld metal and heat affected zone was lower than that of the base metal. 2) The tensile strength of the deposited metal was much lower than that of the base metal. 3) The porrosity in weld metal zone was negligible under the adopted conditsion of experiemnts. 4) The residual stress in the weld metal was lower than that of the heat affected zone, because the weld metal was softened. And the mciro-hardness distribution, the tensile strength and the residual stess distribution of the weldment in the as-welded condition were compared with those of the weldment after heat treatment.

  • PDF

Mechanical properties of Al/Al2O3 and Al/B4C composites

  • Pandey, Vinod K.;Patel, Badri P.;Guruprasad, Siddalingappa
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.263-277
    • /
    • 2016
  • Mechanical properties of $Al/Al_2O_3$ and $Al/B_4C$ composites prepared through powder metallurgy are estimated up to 50% $Al_2O_3$ and 35% $B_4C$ weight fractions using micromechanics models and experiments. The experimental Young's modulus up to 0.40 weight fraction of ceramic is found to lie closely between Ravichandran's/Hashin-Shtrikman lower/upper bounds, and close to self consistent method/Miller and Lannutti method/modified rule of mixture/fuzzy logic method single value predictions. Measured Poisson's ratio lies between rule of mixture/Ravichandran lower and upper bound/modified Ravichandran upper bounds. Experimental Charpy energy lies between Hopkin-chamis method/equivalent charpy energy/Ravichandran lower limit up to 20%, and close to the reciprocal rule of mixture for higher $Al_2O_3$ content. Rockwell hardness (RB) and Micro-hardness of $Al/Al_2O_3$ are closer to modified rule of mixture predictions.

A Study on the Microstructures and Properties of Sulfnitrided SCM440 Steel by Micro-pulse Plasma (SCM440강에 형성된 플라즈마 침류질화층의 조직과 특성에 관한 연구)

  • 이재식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.266-277
    • /
    • 1998
  • The effects of $H_2S$ gas ratio, temperature and time on the case depth, hardness, and sulfide and nitride formation on the surface of sulfnitrided SCM440 steel have been studied by micro-pulse plasma technique. The thickness of compound layer of sulfide and nitride increased with the increase of time, temperautre and $H_2S$ gas ratio. But surface hardness decreased with the increase of soft sulfide layer because the hard nitride layer formed beneath the sulfide. The thickness of sulfide layer was about 10$\mu\textrm{m}$ abpve 0.0088% of $H_2S$ gas. The highest surface hardness of the compound layer was Hv835 at $530^{\circ}C$, 1hr and 0.06% of $H_2S$ gas. X-ray diffraction indicated that the surface products were $Fe_{1_x}S$, $Fe_{2.5}N$ and $Fe_4N$. It was confirmed by EPMA that sulfide only existed in the surface.

  • PDF

Electrolytic Boronzing on TiAl-based Intermetallic Compounds in Fused Salt of Borax, Potassium Chloride and Lithium Chloride Mixture (Na$_2$B$_4$O$_7$-KCl-LiCl 혼합용융욕에서 TiAl계 금속간 화합물의 전해붕화처리)

  • 이두환;김익범;이주호;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.359-370
    • /
    • 1998
  • TiAl-based intermetallic compounds were electro-bornizel in the mixture of $Na_2B_4O_7$, KCL and LiCl in the termetature rage between 850 and $1000^{\circ}C$for various times (1-5 hours)under the fixed current density of 0.5 A/$cm^2$. The optimized composition of electrolyte in this work was decided to be 76.9 wt% $Na_2B_4O_7$-19.2 wt.%(0.7KCl-0.3LiCl) -3.9 wt.% al. The samples with boronized layer were investigated by SEM, XRD and EDS. The surface micro-hardness of boronized TiAl was also evaluated using Micro Vickers Hardness Tester. The sample, boronized at $900^{\circ}C$ for 4 hours in the above composition of electrolyte under the current density of 0.5 A/$\textrm{cm}^2$, has about 36$\mu\textrm{m}$ think layer on the surface, and its surface micro-hardness was measured to be 1263 Hv. From the results of SEM, XRD and EDS, the layer consisted of $TiB_2$ sublayer and Al-oxide sub layer. Al-depleted layer below the Al-oxide sudlayer was also detected. The activation energy for formation of boronized layer in this study was calculated as 178 Kcal/moleK.

  • PDF

A Study on the Hydrogen treatment of It and Ti-pd Alloy (티타늄 및 티나늄-팔라듐 합금의 수소처리에 관한 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.15 no.1
    • /
    • pp.5-25
    • /
    • 1993
  • Effects of hydrogenation on microstructure and mechanical properties of pure Ti and Ti-0.15Pd alloy have been studied by means of optical microscopy, differential scanning calorimeter(DSC), Xray diffraction and micro vicker's hardness test. Grain size of pure Ti and Ti-0.15Pd alloy decresed largely by hydrogenation finer than that of pure Ti and the grain size refinement was evedent in Ti-0.15Pd alloy than that in pure Ti. Ti-.015Pd alloy carried out solution treatment at 950$^{\circ}C$, the transformation of $\alpha$' martensite was occured. The amount of Hydrogen absorption in Ti-.015Pd alloy was higher than that in pure Ti. Decomposition of hydride in pure titanium and Ti-0.15Pd alloy increased largely by hydrogenation, and micro vicker's hardness of Ti-.015Pd alloy was largely than that of pure Ti by 30% after hydrogenation. The micro vicker's hardness of Ti-0.15Pd alloy after solution treatment and dehydrogenation were higher at $\beta$ phase ranger(950$^{\circ}C$) than that phase range(750$^{\circ}C$).

  • PDF

Intermetallic Compounds Behavior at Laser Overlay Interface of Aluminum and Fe-based Powder (Al-Fe 레이저 오버레이층 경계면에서의 금속간화합물 거동)

  • Kang, Nam-Hyun;Yoo, Yeon-Gon;Lee, Chang-Woo;Kim, Jeong-Han
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2007
  • A $CO_2$ laser overlay was conducted by using a Fe-based powder on the AC2B aluminum substrate. Cracks and intermetallic compounds (IMC) were observed inconsistently along the interface between the overlay and post-molten layer. A scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) detected some Fe-rich IMC ($Fe_3Al$, FeAl) as well as the brittle Al-rich IMC ($Fe_2Al_5,\;FeAl_3$). Micro vickers hardness proved the formation of Al-rich IMC ($FeAl_3$) along the interface by showing HV0.1 $800{\sim}900$. Furthermore, nano indentation was successfully applied to investigate the behavior of IMC more precisely than the micro vickers hardness.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

A Study on the Diffusion Bonding of Mg-Ni under Low Eutectic Temperature (최소 공정온도하에서 Mg-Ni의 열확산 접합에 관한 연구)

  • Jin, Yeung Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Diffusion bonding is a technique that has the ability to join materials with minimum change in joint micro-structure and deformation of the component. The quality of the joints produced was examined by metallurgical characterization and the joint micro-structure developed across the diffusion bonding was related to changes in mechanical properties as a function of the bonding time. An increase in bonding time also resulted in an increase in the micro-hardness of the joint interface from 55 VHN to 180 VHN, The increase in hardness was attributed to the formation of intermetallic compounds which increased in concentration as bonding time increased.

Effect of Deposition Time on the Properties of TiN-coated Layer of SM45C Steel by Arc Ion Plating (AIP법에서 증착시간이 SM45C 강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.44-50
    • /
    • 2011
  • The effect of deposition time in arc ion plating on surface properties of the TiN-coated SM45C steel is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured for various deposition times. It has been shown that the deposition time has a considerable effect on the micro-hardness, the coated thickness, and the atomic distribution of TiN of the SM45C steels but that it has little influence on the surface roughness and adhesion strength.