• 제목/요약/키워드: Micro-contact measurement

검색결과 85건 처리시간 0.029초

미세주름 측정을 위한 비접촉식 영상측정기술의 발전 (Development of Non-contact Image Measuring Technique for Evaluating Micro-relief)

  • 김남수;김용민
    • 대한화장품학회지
    • /
    • 제31권3호
    • /
    • pp.253-257
    • /
    • 2005
  • 피부노화의 정도를 판정하기 위해 사용되는 주름측정법들은 객관성과 재현성의 확보가 중요한 요소이다. 최근의 경향은 주름의 형태나 깊이에 주는 영향을 최소화하기 위해 주름 측정시 피부에 직접 기계나 도구를 접촉하지 않고 측정하는 비접촉식 측정방법으로 빠르게 전환되고 있는 상황이다. 저자들은 주름측정 기술의 변천 과정을 간단히 살펴보고, 비접촉식 fringe projection 방식의 미세주름 측정기기인 PRIMOS를 중심으로 측정원리, 특징들을 접촉식 측정방법인 모사판을 이용한 방법과 비교하였다.

미소 액적의 접촉각 및 건조 특성 측정 시스템 개발 (Development of Measurement System for Contact Angle and Evaporation Characteristics of a Micro-droplet on a Substrate)

  • 권계시;안승현;장민혁
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.414-420
    • /
    • 2013
  • We developed inkjet based measurement system for micro-droplet behavior on a substrate. By using the inkjet dispenser, a droplet, which is as small as few pico-liter in volume, can be jetted and the amount can be controlled. After jetting, the droplet image on the substrate is acquired from side view camera. Then, droplet profile is extracted to measure droplet volume, contact angle and evaporation characteristics. Also top view image of the droplet is acquired for better understanding of droplet shape. The previous contact angle measurement method has limitations since it mainly measures the ratio of height and contact diameter of droplet on a substrate. Unlike previous measurement system, our proposed method has advantages because various behavior of droplet on substrate can be effectively analyzed by extracting the droplet profile.

마이크로 성형기에서 미세 변위 측정을 위한 레이저 간섭계 개발에 관한 연구 (A Study on Laser Interferometer Development for Micro Displacement Measurement in Micro Former)

  • 최재원;김대현;최경현;이석희;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1195-1198
    • /
    • 2003
  • Micro former has been known as a useful tool for machining micro parts. It makes micro holes automatically with punches, a hole-shape die and material by rotation of crank shaft synchronously. Micro displacement in micro forming affects on the performance of machining because micro forming size is similar with its mechanical displacement. Therefore, the measurement of this micro displacement is essential to be guaranteed to obtain high forming precision in the whole machine as well as its devices. This paper addresses the development of a laser interferometer to measure micro displacement for a micro former. The laser interferometer is able to measure micro displacement during a few micro seconds with non-contact. For the experiment, a laser probe is installed on the optical table with optical devices and a micro displacement generating device. The velocity decoding board is also added to calculate doppler shift frequency directly. Finally simple experiments are conducted to confirm its functional operation.

  • PDF

마이크로 기둥 구조의 크기가 소유성 특성 발현에 미치는 영향 (The Effect of Dimensions of Micro-post on Oleophobic Property)

  • 김남경;김해지
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.91-96
    • /
    • 2018
  • The oleophobic property of surfaces modified with micro-post structures are investigated for a range of micro-post diameter ($11-23{\mu}m$) and pitch ($20-40{\mu}m$). The contact angle of an oil droplet on surfaces with various micro-post dimensions was calculated using the Cassie-Baxter model and did not show a good agreement with the measured contact angle. From measurement, the micro-post with diameter of $23{\mu}m$ and pitch of $32{\mu}m$ was found to have the highest contact angle ($134.3^{\circ}$).

접촉각 측정을 통한 스틱키의 표면화학적 특성 분석 (Analysis of the Surface Characterisitics of Microstickies by Contact Angle Measurement)

  • 박일;이학래
    • 펄프종이기술
    • /
    • 제37권2호
    • /
    • pp.21-29
    • /
    • 2005
  • Increase in the utilization rate of recycled paper has significantly increased the problem associated with stickies. Despite the effort to eliminate contaminants from recycled furnishes, stickies are still the most serious obstacle in using recycled paper. The amount of micro stickies that are too small to be eliminated by screening, tends to increase significantly as the closure level of white water system is increased and the quality of raw material deteriorates. To establish a process efficient in removing micro stickies is strongly required. In this study, the surface characteristic of micro stickies was investigated with contact angle measurement. Surface energies of MCC, PSA film and model micro stickies were 53.37 mN/m, 29.75mN/m, and 29.63mN/m, respectively. This indicates that the surface characteristic of MMS is very similar to PSA. Thus, solvent coating of PSA and evaporation of the solvent provided excellent model micro stickies for flotation experiment.

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

고밀도 프로빙 테스트를 위한 수직형 프로브카드의 제작 및 특성분석 (Development and Characterization of Vertical Type Probe Card for High Density Probing Test)

  • 민철홍;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.825-831
    • /
    • 2006
  • As an increase of chip complexity and level of chip integration, chip input/output (I/O) pad pitches are also drastically reduced. With arrival of high complexity SoC (System on Chip) and SiP (System in Package) products, conventional horizontal type probe card showed its limitation on probing density for wafer level test. To enhance probing density, we proposed new vertical type probe card that has the $70{\mu}m$ probe needle with tungsten wire in $80{\mu}m$ micro-drilled hole in ceramic board. To minimize alignment error, micro-drilling conditions are optimized and epoxy-hardening conditions are also optimized to minimize planarity changes. To apply wafer level test for target devices (T5365 256M SDRAM), designed probe card was characterized by probe needle tension for test, contact resistance measurement, leakage current measurement and the planarity test. Compare to conventional probe card with minimum pitch of $50{\sim}125{\mu}m\;and\;2\;{\Omega}$ of average contact resistance, designed probe card showed only $22{\mu}$ of minimum pitch and $1.5{\Omega}$ of average contact resistance. And also, with the nature of vertical probing style, it showed comparably small contact scratch and it can be applied to bumping type chip test.

레이저 간섭계를 이용한 마이크로 시스템의 미소변위 측정에 관한 연구 (A Study of Micro Displacement Measurement of Micro System using the Laser Interferometer)

  • 최경현;김창종;조수정
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.22-26
    • /
    • 2006
  • This paper addresses the development of a laser interferometer to measure micro displacement for a micro system. The laser interferometer is able to measure micro displacement during a few micro seconds with non-contact. In order to employ the interferometer, the displacement calibration experiment should be required. For the experiment, a laser probe installed on the optical table with optical devices and a micro stage. The velocity decoding board is also added to calculate doppler shift frequency directly. The output signal is processed by LabView. Finally experiments are found out the relation between displacement and output signal.

  • PDF

Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter

  • Lee, In-Ho;Son, Dae-Soo;Choi, Ik-Hwang;Lee, Tae-Hun;Jhang, Kyung-Young
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.576-581
    • /
    • 2007
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Especially, when we use contact PZT transducer, if the contacting pressure is not kept in constant during the measurement then there exists extraneous fluctuation in the measured nonlinearity caused by the unstable contact condition, In this paper, we developed a pneumatic control system to keep the contacting pressure of transducer in constant during the measurement and analyzed the effect of contacting pressure to the ultrasonic nonlinearity measurement As a result, we found that the pressure of transducer in our measurement system should be greater than 170 kPa to measure the ultrasonic nonlinear parameter in stable with no dependency on the contacting pressure.

마이크로 유체렌즈를 이용한 마이크로 PIV 측정에 관한 실험적 연구 (Experimental Study on Micro PIV Measurement using a Micro Liquid Lens)

  • 정성룡;당중덩;최진호;김규만;박철우
    • 한국가시화정보학회지
    • /
    • 제8권3호
    • /
    • pp.22-28
    • /
    • 2010
  • In the present study, we performed the velocity field measurement in a microchannel using a focal length variable micro liquid lens. The liquid lens is used as a beam expander in a micro-PIV system to acquire the scatter image of the seeded particle. A thin film-type micro liquid lens was made of PDMS material and it was attached on top of the 700-micron-wide working fluid supply channel trench. As a result, the focal length and contact angle of the liquid lens changed with variations in applied pressure.