• Title/Summary/Keyword: Micro-columnar

Search Result 29, Processing Time 0.028 seconds

THE EFFECT OF SURFACE ROUGHNESS OF CSI(TL) MICRO-COLUMNS ON THE RESOLUTION OF THE X-RAY IMAGE; OPTICAL SIMULATION STUDY

  • Kim, Hyun-Ki;Bae, Jun-Hyung;Cha, Bo-Kyung;Jeon, Ho-Sang;Kim, Jong-Yul;Kim, Chan-Kyu;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • Micro-columnar CsI(Tl) is the most popular scintillator material which is used for many indirect digital X-ray imaging detectors. The light scattering at the surface of micro-columnar CsI(Tl) scintillator was studied to find the correlation between the surface roughness and the resultant image resolution of indirect X-ray imaging detectors. Using a commercially available optical simulation program, Light Tools, MTF (Modulation Transfer Function) curves of the CsI(Tl) film thermally evaporated on glass substrate with different thickness were calculated and compared with the experimental estimation of MTF values by the edge X-ray image method and CCD camera. It was found that the standard deviation value of Gaussian scattering model which is determined by the surface roughness of micro-columns could certainly change the MTF value of image sensors. This model and calculation methodology will be beneficial to estimate the overall performance of indirect X-ray imaging system with CsI(Tl) scintillator film for optimum design depending on its application.

A study on the microstructure and micro-hardenss distribution in laser welded AZ31 magnesium alloy (AZ31 마그네슘합금 레이저 용접부의 미세조직 및 미소경도의 분포에 관한 연구)

  • Choi, Y.H.;Lee, M.Y.;Choi, S.H.
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.11-15
    • /
    • 2012
  • The laser weld of AZ31 magnesium alloy was characterized with OM, EBSD and micros vickers hardness tester in experiment. EBSD analysis and micro-hardness measurements were carried out at the three regions (Equiaxed Zone, Columnar Dendrite Zone, Base Metal) of the welded AZ31Mg alloy sheets. The magnesium alloy show the rectangular shape bead in laser weld. EBSD analysis revealed that the three regions show the heterogeneous distribution of grain size and microtexture. Micro-hardness measurement also revealed that the heterogeneous distribution of microstructure contributed to the heterogeneous micro-hardness distribution in the three regions.

  • PDF

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

A reduced order model for fission gas diffusion in columnar grains

  • D. Pizzocri;M. Di Gennaro;T. Barani;F.A.B. Silva;G. Zullo;S. Lorenzi;A. Cammi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3983-3995
    • /
    • 2023
  • In fast reactors, restructuring of the fuel micro-structure driven by high temperature and high temperature gradient can cause the formation of columnar grains. The non-spheroidal shape and the non-uniform temperature field in such columnar grains implies that standard models for fission gas diffusion can not be applied. To tackle this issue, we present a reduced order model for the fission gas diffusion process which is applicable in different geometries and with non-uniform temperature fields, maintaining a computational requirement in line with its application in fuel performance codes. This innovative application of reduced order models as meso-scale tools within fuel performance codes represents a first-of-a-kind achievement that can be extended beyond fission gas behaviour.

The magnetic properties in Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal with columnar defects

  • Lee, C.W.;Shim, S.Y.;Ha, D.H.;Kim, D.H.;Lee, T.W.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.103-106
    • /
    • 2000
  • We have studied the magnetic properties in Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal with columnar defects using micro Hall-probe array. We found that fold profiles inside sample were similar to the Bean's critical state model from the magnetic hysteresis measurement. In the magnetic relaxation measurement, the normalized relaxation rates were maximum near the center and decreased toward the edge of the sample expect zero gauss. The relaxation rates as a function of the temperature were maximum near the 40K and rapidly decreased both sides of the peak.

  • PDF

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

Microstructure and Electrical Properties of In2O3 Thin Films Fabricated by RF Magnetron Sputtering (RF Magnetron Sputtering 방법으로 제조한 In2O3 박막의 미세구조와 전기적 특성)

  • Jeon, Yong-Su;Yun, Yeo-Chun;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.290-295
    • /
    • 2002
  • Microstructure and electrical properties of $In_2O_3$ transparent thin films are analyzed on the basis of Structure Zone Model (SZM) proposed by Thornton. Thin films are deposited on glass substrate by RF magnetron sputtering with variation of substrate temperature $(T_s)$ and argon gas pressure $(P_{Ar})$. Microstructure of Zone I of SZM is observed with lowering of substrate temperature or increasing of argon pressure. The higher electrical resistivity of those specimens is due to micro-pores or voids between columnar grains. At the conditions of $T_s=450^{\circ}C$ and $P_{Ar}$=4.2mTorr, the Zone II structure of SZM and the lowest electrical resistivity $(2.1{\times}10^{-2}{\Omega}cm)$ are observed. The dense structure of columnar grains with faceting on growing surface and preferred orientation of (100) plane are observed in those specimens.

Development of Micro Tensile Test of CVD-SiC coating Layer for TRISO Nuclear Fuel Particles at elevated temperature

  • Lee, Hyun-Min;Park, Kwi-Il;Kim, Do-Kyung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.95.1-95.1
    • /
    • 2012
  • Very High Temperature gas cooler Reactor (VHTR) has been considered as one of the most promising nuclear reactor because of many advantages including high inherent safety to avoid environmental pollution, high thermal efficiency and the role of secondary energy source. The TRISO coated fuel particles used in VHTR are composed of 4 layers as OPyC, SiC, IPyC and buffer PyC. The significance of CVD-SiC coatings used in tri-isotropic(TRISO) nuclear coated fuel particles is to maintain the strength of the whole particle. Various methods have been proposed to evaluate the mechanical properties of CVD-SiC film at room temperature. However, few works have been attempted to characterize properties of CVD-SiC film at high temperature. In this study, micro tensile system was newly developed for mechanical characterization of SiC thin film at elevated temperature. Two kinds of CVD-SiC films were prepared for micro tensile test. SiC-A had [111]-preferred orientation, while SiC-B had [220]-preferred orientation. The free silicon was co-deposited in SiC-B coating layer. The fracture strength of two different CVD-SiC films was characterized up to $1000^{\circ}C$.The strength of SiC-B film decreased with temperature. This result can be explained by free silicon, observed in SiC-B along the columnar boundaries by TEM. The presence of free silicon causes strength degradation. Also, larger Weibull-modulus was measured. The new method can be used for thin film material at high temperature.

  • PDF

Color Difference Characterization on Nickel Silicides (니켈실리사이드의 색차분석)

  • Jung Youngsoon;Song Ohsung;Kim Dugjoong;Choi Yongyun;Kim Chongjun
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.1
    • /
    • pp.44-48
    • /
    • 2005
  • We prepared nickel silicide layers from p-Si(l00)/SiO₂(2000 Å)/poly-Si(700 Å)/Ni(400 Å) structures, feasible for gates in MOSFETs, by annealing them from 500℃~900℃ for 30 minutes. We measured the color coordination in visible range, cross sectional micro-structure, and surface topology with annealing temperature by an UV-VIS-IR spectrometer, field effect scanning electron microscope(FE-SEM), and scanning probe micro-scope respectively. We conclude that we may identify the nickel silicide by color difference of 0.90 and predict the silicide process reliability by color coordination measurement. The nickel silicide layers showed similar thickness while the columnar grains size and surface roughness increased as annealing temperature increased.

Modulated Pulse Power Sputtering Technology for Deposition of Al Doped ZnO Thin Film (Al doped ZnO 박막 증착을 위한 모듈레이티드 펄스 스퍼터링)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Modulated Pulse Power (MPP) magnetron sputtering is a new high-power pulsed magnetron sputtering (HPPMS) technology which overcomes the low deposition rate problem by modulating the pulse voltage shape, amplitude, and the duration. Highly ionized magnetron sputtering can be performed without arcing because it can be controlled as multiple steps of micro pulses within one overall pulse period in the range of 500-3,000 ${\mu}s$. In this study, the various waveforms of discharge voltage and current for micro pulse sets of MPP were investigated to find the possibility of controlling the strongly ionized plasma mode. Enhanced ionization of the sputtered metal atoms was obtained by OES. Large grained columnar structure can be grown by the strongly ionized plasma mode in the AZO deposition using MPP. In the most highly ionized deposition condition, the preferred orientation of (002) plane decreased, and the resistivity, therefore, increased by the plasma damage.