DOI QR코드

DOI QR Code

A reduced order model for fission gas diffusion in columnar grains

  • D. Pizzocri (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • M. Di Gennaro (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • T. Barani (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • F.A.B. Silva (Eindhoven University of Technology, Department of Mathematics and Computer Science, Centre for Analysis, Scientific Computing and Applications) ;
  • G. Zullo (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • S. Lorenzi (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • A. Cammi (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2023.01.24
  • Accepted : 2023.07.09
  • Published : 2023.11.25

Abstract

In fast reactors, restructuring of the fuel micro-structure driven by high temperature and high temperature gradient can cause the formation of columnar grains. The non-spheroidal shape and the non-uniform temperature field in such columnar grains implies that standard models for fission gas diffusion can not be applied. To tackle this issue, we present a reduced order model for the fission gas diffusion process which is applicable in different geometries and with non-uniform temperature fields, maintaining a computational requirement in line with its application in fuel performance codes. This innovative application of reduced order models as meso-scale tools within fuel performance codes represents a first-of-a-kind achievement that can be extended beyond fission gas behaviour.

Keywords

Acknowledgement

This research activity has received funding from the Euratom research and training programme 2017-2021 through the INSPYRE Project under grant agreement No.754329 and from the Euratom research and training programme 2020-2024 through the PATRICIA project under grant agreement No.945077. The authors are grateful to A.G. Carloni.

References

  1. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical Information Center - Energy Research and Development Administration, University of California, Berkeley, CA, USA, 1976.
  2. H.J. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242, https://doi.org/10.1080/00337578008207118.
  3. R.J. White, M.O. Tucker, A new fission-gas release model, J. Nucl. Mater. 118 (1) (1983) 1-38, https://doi.org/10.1016/0022-3115(83)90176-9.
  4. R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77, https://doi.org/10.1016/j.jnucmat.2003.10.008.
  5. P. Van Uffelen, R.J.M. Konings, C. Vitanza, J. Tulenko, Analysis of reactor fuel rod behavior, in: D.G. Cacuci (Ed.), Handbook of Nuclear Engineering, vol. 13, Springer Science + Business Media, LLC., New York, NY, USA, 2010, pp. 1519-1627, https://doi.org/10.1007/978-0-387-98149-9-13.
  6. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86, https://doi.org/10.1016/j.nucengdes.2012.12.002.
  7. T.M. Besmann, et al., State-of-the-art report on multi-scale modelling of nuclear fuels. www.oecd-nea.org, 2015.
  8. P.V. Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A Review of Fuel Performance Modelling, vol. 4, 2019, https://doi.org/10.1016/j.jnucmat.2018.12.037.
  9. K. Lassmann, Transuranus: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (1992) 295-302, https://doi.org/10.1016/0022-3115(92)90487-6.
  10. M. Lainet, B. Michel, J.C. Dumas, M. Pelletier, I. Ramiere, Germinal, a fuel performance code of the pleiades platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516 (2019), https://doi.org/10.1016/j.jnucmat.2018.12.030.
  11. G. Thouvenin, B. Michel, J. Sercombe, D. Plancq, P. Thevenin, Multidimensional Modeling of a Ramp Test with the Pwr Fuel Performance Code Alcyone, 2007.
  12. D.M. Perez, R.L. Williamson, S.R. Novascone, T.K. Larson, J.D. Hales, B. W. Spencer, G. Pastore, An Evaluation of the Nuclear Fuel Performance Code bison, vol. 2, 2013.
  13. K. Forsberg, A.R. Massih, Fission gas release under time-varying conditions, J. Nucl. Mater. 127 (1985) 141-145, https://doi.org/10.1016/0022-3115(85)90348-4.
  14. P. Hermansonn, A.R. Massih, An effective method for calculation of diffusive flow in spherical grains, J. Nucl. Mater. 304 (2002) 204-211, https://doi.org/10.1016/S0022-3115(02)00873-5.
  15. K. Lassmann, H. Benk, Numerical algorithms for intragranular fission gas release, J. Nucl. Mater. 280 (2000) 127-135, https://doi.org/10.1016/S0022-3115(00)00044-1.
  16. C. Rim, Background and Derivation of ANS-5.4 Standard Fission Product Release Model, Tech. Rep. NUREG/CR-2507, 1982.
  17. W.N. Rausch, F.E. Panisko, ANS-5.4: a Computer Subroutine for Predicting Fission Gas Release, Tech. Rep. NUREG/CR-0497, Pacific Northwest Laboratory, USA, 1979, p. 8.
  18. J. Turnbull, C. Beyer, Background and Derivation of ANS-5.4 Standard Fission Product Release Model, United States Nuclear Regulatory Commision, 2010, https://doi.org/10.2172/1033086.
  19. P. Elton, K. Lassmann, Calculational methods for diffusional gas release, Nucl. Eng. Des. 101 (3) (1987) 259-265, https://doi.org/10.1016/0029-5493(87)90054-9.
  20. D. Pizzocri, C. Rabiti, L. Luzzi, T. Barani, P. Van Uffelen, G. Pastore, Polypole-1: an accurate numerical algorithm for intra-granular fission gas release, J. Nucl. Mater. 478 (2016) 333-342, https://doi.org/10.1016/j.jnucmat.2016.06.028.
  21. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. Van Uffelen, L. Luzzi, An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and re-solution, J. Nucl. Mater. 509 (2018) 687-699, https://doi.org/10.1016/j.jnucmat.2018.07.030.
  22. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S. Pitts, A. Alfonsi, J. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330.
  23. N.E. Todreas, M. Kazimi, Nuclear Systems, vol. I, CRC Press, 2012, https://doi.org/10.1201/b14887.
  24. A.E. Waltar, D.R. Todd, P.V. Tsvetkov, Fast spectrum reactors 9781441995728 (2012), https://doi.org/10.1007/978-1-4419-9572-8.
  25. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (1-3) (2014) 374-379, https://doi.org/10.1016/j.jnucmat.2013.12.005.
  26. T. Barani, G. Pastore, D. Pizzocri, D. Andersson, C. Matthews, A. Alfonsi, K. Gamble, P. Van Uffelen, L. Luzzi, J. Hales, M ultiscale modeling of fission gas behavior in u3si2 under lwr conditions, J. Nucl. Mater. 522 (2019) 97-110, https://doi.org/10.1016/j.jnucmat.2019.04.037. https://www.sciencedirect.com/science/article/pii/S0022 311519301151. URL.
  27. T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza, Model Order Reduction in Fluid Dynamics: Challenges and Perspectives, Reduced Order Methods for Modeling and Computational Reduction, Springer International Publishing, 2014, pp. 235-273, https://doi.org/10.1007/978-3-319-02090-7-9.
  28. A. Manzoni, A. Quarteroni, G. Rozza, Computational reduction for parametrized PDEs: strategies and applications, Milan J. Math. 80 (2012) 283-309, https://doi.org/10.1007/s00032-012-0182-y.
  29. J. Lumley, The structure of inhomogeneous turbulent flows, in: Proceedings of the International Colloquium, vol. 80, Publishing house Nakua, 1967, pp. 166-167.
  30. L. Sirovich, Turbulence and the dynamics of coherent structures part I-III, Q. Appl. Math. 45 (1987) 561-571.
  31. P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, 1996, https://doi.org/10.1017/cbo9780511622700.
  32. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020), https://doi.org/10.1016/j.jnucmat.2020.152042.
  33. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX code. https://gitlab.com/poliminrg/sciantix, 2020.
  34. V. Di Marcello, V. Rondinella, A. Schubert, J. Van De Laar, P. Van Uffelen, Modelling actinide redistribution in mixed oxide fuel for sodium fast reactors, Prog. Nucl. Energy 72 (2014), https://doi.org/10.1016/j.pnucene.2013.10.008.
  35. S. Novascone, P. Medvedev, J.W. Peterson, Y. Zhang, J. Hales, Modeling porosity migration in LWR and fast reactor mox fuel using the finite element method, J. Nucl. Mater. 508 (2018), https://doi.org/10.1016/j.jnucmat.2018.05.041.
  36. T. Barani, D. Pizzocri, F. Cappia, G. Pastore, L. Luzzi, P. Van Uffelen, M odeling high burnup structure in oxide fuels for application to fuel performance codes. part ii: porosity evolution, J. Nucl. Mater. 563 (2022), 153627, https://doi.org/10.1016/j.jnucmat.2022.153627. https://www.sciencedirect.com/science/article/pii/S0022 311522001234. URL.
  37. D.R. Olander, Theory of helium dissolution in uranium dioxide. II. Helium solubility, J. Chem. Phys. 43 (3) (1965) 785-788, https://doi.org/10.1063/1.1696844.
  38. A. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, Atomic energy of Canada Limited, 1957.
  39. M. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and re-solution of gas atoms under irradiation, Nucl. Sci. Eng. 37 (1969) 180-185, https://doi.org/10.13182/nse69-a20676, 180-185. 37.
  40. J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008), https://doi.org/10.1016/j.jnucmat.2007.04.037.
  41. L. Noirot, Margaret: a comprehensive code for the description of fission gas behavior, Nuclear Engineering and Design, in: (W3MDM) University of Leeds International Symposium: what where when? Multi-Dimensional Advances for Industrial Process Monitoring, vol. 241, 2011, pp. 2099-2118, https://doi.org/10.1016/j.nucengdes.2011.03.044, 6, https://www.sciencedirect.com/science/article/pii/S0029 549311002561. URL.
  42. A. Cheniour, G. Pastore, J.M. Harp, C.M. Petrie, N.A. Capps, A pplication of bison to uo2 minifuel fission gas release analysis, J. Nucl. Mater. 565 (2022), 153686, https://doi.org/10.1016/j.jnucmat.2022.153686. https://www.sciencedirect.com/science/article/pii/S0022.311522001799. URL.
  43. V. Tarasov, M. Veshchunov, M odels for fuel porosity evolution in uo2 under various regimes of reactor operation, Nucl. Eng. Des. 272 (2014) 65-83, https://doi.org/10.1016/j.nucengdes.2014.02.016. https://www.sciencedirect.com/science/article/pii/S0029.549314001095. URL.
  44. OpenFOAM®-foundation, Openfoam version 8.0. https://openfoam.org, 2017.
  45. J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, A.J. Walter, The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, J. Nucl. Mater. 107 (1982) 168-184, https://doi.org/10.1016/0022-3115(82)90419-6.
  46. J.A. Turnbull, R. White, C. Wise, The Diffusion Coefficient for Fission Gas Atoms in Uranium Dioxide, International Atomic Energy Agency, 1989, pp. 174-181.
  47. S. Lorenzi, A. Cammi, L. Luzzi, G. Rozza, POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Eng. 311 (2016) 151-179, https://doi.org/10.1016/j.cma.2016.08.006.
  48. G. Berkooz, P. Holmes, J. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech. 25 (1993) 539-575, https://doi.org/10.1146/annurev.fl.25.010193.002543.
  49. S. Sirisup, G.E. Karniadakis, Stability and accuracy of periodic flow solutions obtained by a pod-penalty method, Phys. Nonlinear Phenom. 202 (3-4) (2005) 218-237, https://doi.org/10.1016/j.physd.2005.02.006.
  50. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 465 (2015) 398-408, https://doi.org/10.1016/j.jnucmat.2014.09.077.
  51. R.L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C. J. Permann, D. Andrs, R.C. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423 (2012) 149-163.
  52. P. Losonen, On the behaviour of intragranular fission gas in UO2 fuel, J. Nucl. Mater. 280 (2000) 56-72.
  53. G. Zullo, D. Pizzocri, L. Luzzi, On the Use of Spectral Algorithms for the Prediction of Short-Lived Volatile Fission Product Release: Methodology for Bounding Numerical Error, Nuclear Engineering and Technology, 2021.
  54. J.A. Turnbull, R. Cornell, The re-solution of fission-gas atoms from bubbles during the irradiation of UO2 at an elevated temperature, J. Nucl. Mater. 41 (1971) 156-160, https://doi.org/10.1016/0022-3115(71)90075-4.
  55. F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (1958) 335-351, https://doi.org/10.1016/0022-3697(58)90053-2.
  56. S. Boneva, R. Calabrese, G. Chassie, D. Chulkin, A. Denis, The Third RISo Fission Gas Project: Bump Test GE7 (ZX115), Tech. Rep. RISO-FGP3-GE7, 1990.
  57. Fuel Modelling at Extended Burnup (FUMEX-II), Tech. Rep. IAEA-TECDOC-1687, 2012.
  58. Improvement of Computer Codes Used for Fuel Behaviour Simulations (FUMEXIII), Tech. Rep. IAEA-TECDOC-1697, 2013.
  59. L. Luzzi, T. Barani, B. Boer, L. Cognini, A.D. Nevo, M. Lainet, S. Lemehov, A. Magni, V. Marelle, B. Michel, D. Pizzocri, A. Schubert, P.V. Uffelen, M. Bertolus, Assessment of three european fuel performance codes against the superfact-1 fast reactor irradiation experiment, Nucl. Eng. Technol. 53 (2021), https://doi.org/10.1016/j.net.2021.04.010.
  60. L. Luzzi, T. Barani, B. Boer, A.D. Nevo, M. Lainet, S. Lemehov, A. Magni, V. Marelle, B. Michel, D. Pizzocri, A. Schubert, P.V. Uffelen, M. Bertolus, Assessment of inspyre-extended fuel performance codes against the superfact-1 fast reactor irradiation experiment, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.10.038.