• Title/Summary/Keyword: Micro-bolometer

Search Result 19, Processing Time 0.022 seconds

A Readout IC Design for the FPN Reduction of the Bolometer in an IR Image Sensor

  • Shin, Ho-Hyun;Hwang, Sang-Joon;Jung, Eun-Sik;Yu, Seung-Woo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.196-200
    • /
    • 2007
  • In this paper, we propose and discuss the design using a simple method that reduces the fixed pattern noise(FPN) generated on the amorphous Si($\alpha-Si$) bolometer. This method is applicable to an IR image sensor. This method can also minimize the size of the reference resistor in the readout integrated circuit(ROIC) which processes the signal of an IR image sensor. By connecting four bolometer cells in parallel and averaging the resistances of the bolometer cells, the fixed pattern noise generated in the bolometer cell due to process variations is remarkably reduced. Moreover an $\alpha-Si$ bolometer cell, which is made by a MEMS process, has a large resistance value to guarantee an accurate resistance value. This makes the reference resistor be large. In the proposed cell structure, because the bolometer cells connected in parallel have a quarter of the original bolometer's resistance, a reference resistor, which is made by poly-Si in a CMOS process chip, is implemented to be the size of a quarter. We designed a ROIC with the proposed cell structure and implemented the circuit using a 0.35 um CMOS process.

A Study on Double Sampling Design of CMOS ROIC for Uncooled Bolometer Infrared Sensor using Reference Signal Compensation Circuit (기준신호 보상회로를 이용한 더블 샘플링 방식의 비냉각형 볼로미터 검출회로 설계에 관한 연구)

  • Bae, Young-Seok;Jung, Eun-Sik;Oh, Ju-Hyun;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.89-92
    • /
    • 2010
  • A bolometer sensor used in an infrared thermal imaging system has many advantages on the process because it does not need a separate cooling system and its manufacturing is easy. However the sensitivity of the bolometer is low and the fixed pattern noise(FPN) is large, because the bolometer sensor is made by micro electro mechanical systems (MEMS). These problems can be fixed-by using the high performance readout integrated circuit(ROIC) with noise reduction techniques. In this paper, we propose differential delta sampling circuit to remove the mismatch noise of ROIC itself, the FPN of the bolometer. And for reduction of FPN noise, the reference signal compensation circuit which compensate the reference signal by using on-resistance of MOS transistor was proposed.

The Performance Modeling of a VGA Bolometer with Self-Aligned Structure (자기정렬 구조를 갖는 VGA급 볼로미터의 성능 모델링)

  • Park, Seung-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.450-455
    • /
    • 2010
  • The performance modeling of a $25{\mu}m$ pitch VGA ${\mu}$-bolometer with the self-aligned thermal resistor structure is carried out. The self-aligned thermal resistor can be utilized for the maximizing the thermal resistance and the fill factor of a bolometer, so the performance improvement can be expected. From the results of the performance modeling of the micro-bolometer with self-align thermal resistor for a $25{\mu}m$ pitch $640{\times}480$ microbolometer designed with $0.6{\mu}m$ minimum feature size, the drastic improvements of NETD from 38.7 mK to 19.1 mK, responsivity of 1.9 times are expected with a self aligned thermal resistor structure. The main reason for the performance improvements with a self-aligned thermal resistor structure comes from the increasement of the thermal resistance.

A study on amorphous silicon thin film for bolometer sensor (볼로미터 센서를 위한 비정질 실리콘 박막)

  • Kang, Tai-Young;Yang, Dae-Joon;Kim, Sang-Mo;Lim, Sung-Su;Lee, Hong-Ki;Kim, Kyoung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.238-239
    • /
    • 2009
  • The amorphous silicon microbolometer array has been developed by the MEMS design and fabrication technology. Before the bolometer array for the image sensor being designed, the structure of unit cell and $16\times16$ array of it was simulated, designed and fabricated. The properties of bolometer have been measured as such that the TCR -3%/K.

  • PDF

Micro-structure and NTCR Characteristics of Copper Manganite Thin Films Fabricated by MOD Process (MOD법으로 제조된 Copper Manganite 박막의 구조 및 NTCR 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Nam, Joong Hee;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.452-457
    • /
    • 2014
  • Copper manganite thin films were fabricated on $SiN_x/Si$ substrate by metal organic decomposition (MOD) process. They were burned-out at $400^{\circ}C$ and annealed at various temperatures ($400{\sim}800^{\circ}C$) for 1h in ambient atmosphere. Their micro-structure and negative temperature coefficient of resistance (NTCR) characteristics were analyzed for micro-bolometer application. The copper manganite film with a cubic spinel structure was well developed at $500^{\circ}C$ which confirmed by XRD and HRTEM analysis. It showed a low resistivity ($47.5{\Omega}{\cdot}cm$) at room temperature and high NTCR characteristics of $-4.12%/^{\circ}C$ and $-2.15%/^{\circ}C$ at room temperature and $85^{\circ}C$, implying a good thin film for micro-bolometer application. Furthermore, its crystallinity was enhanced with increasing temperature to $600^{\circ}C$. However, the appearance of secondary phase at temperatures higher than $600^{\circ}C$ lead to deteriorate the NTCR characteristics.

NiO Films Formed at Room Temperature for Microbolometer

  • Jung, Young-Chul;Koo, Gyohun;Lee, Jae-Sung;Hahm, Sung-Ho;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.327-332
    • /
    • 2013
  • Nickel oxide films using RF sputter was formed on the $SiO_2/Si$ substrate at the room temperature controlled with water circulation system. The feasibility of nickel oxide film as a bolometric material was demonstrated. GIXRD spectrum on NiO(111), NiO(200), and NiO(220) orientation expected as the main peaks were appeared in the grown nickel oxide films. The typical resistivity acquired at the RF power of 100W was about $34.25{\Omega}{\cdot}cm$. And it was reduced to $18.65{\Omega}{\cdot}cm$ according to the increase of the RF power to 400W. The TCR of fabricated micro-bolometer with the resistivity of $34.25{\Omega}{\cdot}cm$ was $-2.01%/^{\circ}C$. The characteristics of fabricated nickel oxide film and micro-bolometer were analyzed with XRD pattern, resistivity, TCR, and SEM images.

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Choi, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_x$) thin films are very good candidate material for uncooled infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_x$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than $1000{\AA}$. This paper presents a new fabrication process of $VO_x$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}(100{\AA})/V(80{\AA})/VO_{x}(500{\AA})$ by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than $-2%/^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

A new fabrication process of vanadium oxides($VO_{x}$) thin films showing high TCR and low resistance for uncooled IR detectors

  • Han, Yong-Hee;Kang, Ho-Kwan;Moon, Sung-Uk;Oh, Myung-Hwan;Park, In-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.558-561
    • /
    • 2001
  • Vanadium oxide ($VO_{x}$) thin films are very good candidate material for uncooked infrared (IR) detectors due to their high temperature coefficient of resistance (TCR) at room temperature. But, the deposition of $VO_{x}$ thin films showing good electrical properties is very difficult in micro bolometer fabrication process using sacrificial layer removal because of its low process temperature and thickness of thin films less than 1000${\AA}$. This paper presents a new fabrication process of $VO_{x}$ thin films having high TCR and low resistance. Through sandwich structure of $VO_{x}$(100${\AA}$)/V(80${\AA}$)/$VO_{x}$(500${\AA}$) by sputter method and post-annealing at oxygen ambient, we have achieved high TCR more than -2%/$^{\circ}C$ and low resistance less than $10K\Omega$ at room temperature.

  • PDF

A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays (비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로)

  • 오태환;조영재;박희원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper proposes a CMOS readout circuit for uncooled micro-bolometer arrays adopting a four-point step calibration technique. The proposed readout circuit employing an 11b analog-to-digital converter (ADC), a 7b digital-to-analog converter (DAC), and an automatic gain control circuit (AGC) extracts minute infrared (IR) signals from the large output signals of uncooled micro-bolometer arrays including DC bias currents, inter-pixel process variations, and self-heating effects. Die area and Power consumption of the ADC are minimized with merged-capacitor switching (MCS) technique adopted. The current mirror with high linearity is proposed at the output stage of the DAC to calibrate inter-pixel process variations and self-heating effects. The prototype is fabricated on a double-poly double-metal 1.2 um CMOS process and the measured power consumption is 110 ㎽ from a 4.5 V supply. The measured differential nonlinearity (DNL) and integrat nonlinearity (INL) of the 11b ADC show $\pm$0.9 LSB and $\pm$1.8 LSB, while the DNL and INL of the 7b DAC show $\pm$0.1 LSB and $\pm$0.1 LSB.