• 제목/요약/키워드: Micro-batteries

검색결과 61건 처리시간 0.033초

이차전지용 탄소재의 흑연화 분위기에 따른 표면미세구조와 전지성능에 미치는 영향 (The Surface Micro-structures with the Atmospheres in Graphitizing the Carboneous Materials for Rechargeable Batteries and Their Effects on the Cell Performances)

  • 허윤;이정용;윤상영
    • 한국재료학회지
    • /
    • 제10권11호
    • /
    • pp.743-748
    • /
    • 2000
  • 리튬이온이차전지의 부극재로 사용되는 탄소재인 비정질 탄소(needle cokes)에 $B_2O_3$를 첨가하여 공기중의 질소 분위기와 Ar 분위기에서 고온으로 흑연화 열처리를 하였을 때의 표면미세구조의 변화와 제 2상의 분포를 투과전자현미경으로 분석하였다. 또한 전지용량, 전지효율과 같은 전지성능이 탄소재의 표면미세구조와 관련되어 있음을 고찰하였다.

  • PDF

리튬이차전지용 음극활물질로서 Micro sized Silicon/CNT/Carbon 복합입자의 전기화학적 특성 (Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries)

  • 신민선;이태민;이성만
    • 전기화학회지
    • /
    • 제22권3호
    • /
    • pp.112-121
    • /
    • 2019
  • 본 연구에서는 마이크로 크기의 실리콘 입자와 탄소나노튜브를 활용하여 고용량을 갖는 실리콘/탄소나노튜브/탄소 복합입자를 제조하여 리튬이차전지용 음극활물질로서의 적용가능성을 확인하고자 하였다. 실리콘/탄소나노튜브/탄소 복합입자 제조를 위해 분무건조 방식을 이용하여 실리콘입자가 탄소나노튜브에 의해 균일하게 분산되어 비정질탄소로 결합된 구조를 갖는 구형의 복합입자를 제조하였다. 제조한 복합입자는 실리콘 입자 주변에 탄소나노튜브의 네트워크 구조를 형성하며 비정질 탄소에 의해 실리콘 입자와 탄소나노튜브의 입자들이 결합한 상태를 유지하는 구조로 이루어진다. 이러한 복합입자의 구조적인 특성으로 인해 계속적인 충방전 과정에서 실리콘의 부피팽창이 효과적으로 완충되고 이에 따라 전기적 접촉 손실 및 SEI 막 형성에 따른 비가역 반응이 제어되어 우수한 수명 특성 및 충전출력 특성을 갖는 것으로 나타난다.

직렬 연결된 납축전지의 충방전 전압 특성 연구 (A Study on Characteristics of Charging and Discharging for Lead Storage Batteries in Series)

  • 문채주;진종수;서동춘;정권성;김태곤;김용구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.75-79
    • /
    • 2008
  • To control the lead storage batteries it is necessary to consider the characteristics of each battery connected in series. In this study, the charging and discharging characteristics of sealed lead storage batteries 12V/1.2A was investigated one by one through experiments. The results of the experiment shows that one should consider the state of each battery to prevent overcharge or deep discharge. Also, we designed an equipment to measure battery voltages simultaneously using micro-controller. This equipment will be useful for monitoring batteries at PV generation system.

  • PDF

Influence of Safety Valve Pressure on Gelled Electrolyte Valve-Regulated Lead/Acid Batteries Under Deep Cycling Applications

  • Oh, Sang-Hyub;Kim, Myung-Soo;Lee, Jin-Bok;Lee, Heung-Lark;, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.75-80
    • /
    • 2002
  • Cycle life tests have been carried out to evaluate the influence of safety valve pressure on valve regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100% DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g and 235.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18% after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than $50{\mu}m$, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to be water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performances and the failure modes of the gelled electrolyte valve-regulated lead acid batteries.

신규 보호회로 적용을 통한 저전류 장비용 군 리튬전지 안전성 개선 (Safety Improvement of Military Primary Lithium Batteries by New Protection Circuit for Low Current System)

  • 윤성기;조유습
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.256-261
    • /
    • 2019
  • The use of military lithium batteries in this field accelerates the generation of internal pressure because the active materials, lithium and the electrolyte, react to form sulfur dioxide gas. This also reduces the amount of electrolyte. In this condition, batteries can 'vent' or 'explode' especially when completely discharged. Such venting and explosion can be regarded as a safety accident, as toxic gases and shrapnel are ejected from the batteries which can harm the user. A DTaQ was carried out in 2017 as a quality problem solution project to solve this safety issue. A protection circuit was thereby developed, which included a micro controller unit (MCU) which can stop battery usage when in an over-discharging state by sensing its low-voltage condition. In 2018, this concept was expanded to lithium batteries for the remote controlled ammunition system. This paper reports results of the improved performance.

초소형 가스 터빈용 스러스트 베어링 내의 유동특성 해석 (ANALYSIS OF FLUID CHARACTERISTICS OF THRUST BEARING ON MILLIMETER-SCALE MICRO GAS TURBINE)

  • 서준혁;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2010
  • Since MEMS based micro actuators or generating devices showed high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas turbine is one of the most powerful item for replacing chemical batteries. However, due to MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is to design the proper bearing which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study of thrust bearing of 10mm diameter turbine is described. Thrust bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Relationship between bearing inlet pressure and mass flow rate and bearing force is figured while changing bearing gap and number of capillaries. The simulation results will be used for further design of micro gas turbine.

  • PDF

Simplified Design and Optimization of Slotless Brushless DC Machine for Micro-Satellites Electro-Mechanical Batteries

  • Abdi, Babak;Bahrami, Hamid;Mirtalaei, S.M.M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.124-129
    • /
    • 2013
  • Electro-Mechanical Batteries have important advantages compared with chemical batteries, especially in Low Earth Orbit satellites applications. High speed, slotless, external rotor, brushless DC machines are proposed and used in these systems as Motor/Generator. A simplified analytic design method is given for this type of machines and, the optimization of machine in order to have maximum efficiency and minimum volume and weight are given in this paper. Particle swarm optimization (PSO) is used as the optimization algorithm and the finite element-based simulations are used to confirm the design and optimization process and show less than 6% error in parametric design.

독립형 태양광 발전소의 연 축전지 모니터링장치 개발 (A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems)

  • 문채주;김태곤;장영학;김의선;임정민
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성 (Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell)

  • 이미재;채유진;김진호;황종희;박상선
    • 한국재료학회지
    • /
    • 제22권12호
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.