Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.12.717

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell  

Lee, Mi-Jai (Korea Institute of Ceramic Engineering & Technology)
Chae, Yoo-Jin (Korea Institute of Ceramic Engineering & Technology)
Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology)
Hwang, Jong-Hee (Korea Institute of Ceramic Engineering & Technology)
Park, Sang-Sun (Vitzrocell)
Publication Information
Korean Journal of Materials Research / v.22, no.12, 2012 , pp. 717-721 More about this Journal
Abstract
Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.
Keywords
Li/$MnO_2$; flexible primary cell; RFID; active tag; USN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. M. Dell, Solid State Ionics, 134, 139 (2009).
2 T. J. Lee, T. T. Cheng, H. K. Juang, S. Y. Chen, G. T. K. Fey and H. K. Jaw, J. Power Sources, 44, 709 (1993).   DOI   ScienceOn
3 T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc., 136, 3169 (1989).   DOI
4 Y. Shao-Horn, S. A. Hackney and B. C. Cornilsen, J. Electrochem. Soc., 144, 3147 (1997).   DOI
5 Y. Chabre and J. Pannetier, Prog. Solid State Chem., 23, 1 (1995).   DOI   ScienceOn
6 T. N. Andersen, Progress in Batteries & Battery Materials, Vol. 11, p. 105-129, eds. D. A. J. Swinkels, Ite-Jec Press, Inc., Ohio, USA (1992).
7 R. Williams, R. Fredlein, G. Lawrance, D. Swinkels, C. Ward, Progress in Batteries & Battery Materials, Vol. 13, p. 102-112, eds. D. A. J. Swinkels, Ite-Jec Press, Inc., Ohio, USA (1994).
8 P. M. De. Wolff, J. W. Visser, R. Giovanoli and R. Brutsch, Chimia, 32, 257 (1978).
9 H. Akashi, K. Tanaka and K. Sekai, J. Power Sources, 104, 241 (2002).   DOI   ScienceOn
10 J. A Lee, C. E Newnham, F. S Stone and F. L Tye, J. Colloid Interface Sci., 45, 289 (1973).   DOI   ScienceOn
11 F. L. Tye, Electrochim. Acta, 21, 415 (1976).   DOI   ScienceOn
12 P. Reuschi, J. Electrochem. Soc. 131, 2737 (1984).   DOI
13 F. Fillaux, C. H. Cachet, H. Ouboumour, J. Tomkinson, C. Levy-Clement and L. T. Yu, J. Electrochem. Soc., 140, 585 (1993).   DOI