• Title/Summary/Keyword: Micro-Step

Search Result 481, Processing Time 0.032 seconds

Fabrication ofMicro/Nano-patterns using MC-SPL (Mechano-Chemical Scanning Probe Lithography) Process (미세탐침기반 기계-화학적 리소그래피공정에 의한 마이크로/나노패턴 제작)

  • 성인하;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.228-233
    • /
    • 2002
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Micro/Nano Rheological Characteristics of PMMA in Hot Embossing Process (핫엠보싱 공정에서 PMMA의 마이크로/나노 레올로지 특성)

  • Kim B. H.;Kim K. S.;Ban J. H.;Shin J. K.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.259-264
    • /
    • 2004
  • The hot embossing process as a method for the fabrication of polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of polymer film during hot embossing process. As the initial step of quantitating the hot embossing process, simple parametric studies for the embossing conditions have been carried out using high resolution masters which patterned by DRIE process. Under different embossing times and pressures, the viscous flow of PMMA films into micro/nano cavities has been investigated. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM analysis considering micro/nano effect, such as surface tension and contact angle.

  • PDF

NUMERICAL STUDY ON THE WAKE OF A SINGLE MICRO VORTEX GENERATOR (Single micro Vortex Generator의 후류에 대한 수치적 연구)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.494-499
    • /
    • 2011
  • One of the devices to prevent separated flow over a wing or a flap at high angle of attack is a vortex generator. In the present work, we numerically study the flow around a low-profile or micro vortex generator whose height is less than local boundary layer thickness which can delay separation with a minimum drag penalty owing to its very small wetted surface area. As a first step toward a parametric study to efficiently design this MVG flow control system, we simulate the flow around a single MVG on a flat plate. For the simulation, we employ OpenFOAM with Launder-Sharma ${\kappa}$-epsilon model. The analysis results are validated by comparing with experimental results of a rectangular MVG at an angle of attack of 10 degrees whose height is 20% of local boundary layer. Important results and aspects of this numerical study are discussed. We also simulate the flow around rectangular, triangular and trapezoidal MVGs and the results are compared

  • PDF

Development and Evaluation for the Micro-Movement Structure of Interspinous (척추극돌간 미세움직임 재현 보형물의 개발 및 평가)

  • Park, Joon-Sik;Seo, Tae-Il;Bae, Jong-Suk;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.127-131
    • /
    • 2006
  • Existing orthopedic implants such as pedicle screw and spinal cage were designed to fix the spinal structure. But, nowadays, physicians want to rehabilitate there original functions. To achieve this request, we studied micro-movable structure for interspinous. As a first step, we designed interspinous structure by 3D CAD to join each spinous processes. Next, we simulate it with various factors such as the thickness of micro-movement structure and the design of clip. At last, we performed static compressive test to satisfy the failure load of 339N and dynamic endurance test of 1.2M cycle. As a result, we developed interspinous implant and did several surgery to evaluated its satisfaction.

Design Approach and Structural Analysis for Development of a Micro-Wear Tester (마이크로 마모 시험기 개발을 위한 설계 방안 및 구조 해석)

  • Yoo, Shin-Sung;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • The tribological behavior of microsystems needs to be clearly understood in order to improve the reliability of precision components. For example, friction and wear phenomena pose serious problems in MEMS applications. As a first step to investigate the tribological behavior of such systems, an appropriate testing system must be acquired. In this work, a micro-wear tester based MEMS platform was designed. The main concern was to achieve a desirable range of horizontal displacement for the specimen holder and also to apply a normal force in the tens of ${\mu}N$ range. The structural analysis of the micro-wear tester showed that the proposed design satisfied these requirements while maintaining the structural integrity.

Distributed Control of a Two Axis Convey Table Using Real-time Micro-Kernel (마이크로 커널을 이용한 2축 반송 테이블의 분산제어)

  • 이건영
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.182-187
    • /
    • 2004
  • In this paper, we propose a PC based distributed controller for a two axis convey table using real-time micro-kernel. PC, Windows program, gives an easy way to implement wealthy GUI and micro-kernel, ${\mu}$C/OS-II, provides a real-time capability to control devices. We built a real-time distributed control system using ${\mu}$C/OS-II kernel which needs to process the tasks for two motors within the desired time to synchronize the motion. We used both semaphore and message mail box for synchronization. Unlike the previous study where we used step motors for the actuator of two axes convey table, we rebuilt the convey table with DC motors and the dedicated position servo which had built in out lab, and then we implemented a realtime distributed control system by putting the micro-kernel into between PC and position servo. Moreover we developed the PC based graphic user interfaces for generating planar drawing image control. Experimental results also presented to show the Proposed control system is useful.

A Study on the Design of Small SMT Platform for Education (교육용 소형 SMT 플랫폼 설계에 관한 연구)

  • Park, Se-Jun
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.24-32
    • /
    • 2020
  • This paper designed and manufactured a chip mounter based on 3D printer technology that can be used for educational research or sample production to disseminate chip mounter, a core technology of SMT line. A stepper motor with open loop control is used for low cost drive design. The shortcomings of the motor's vibration and disassembly caused by the use of the step motor were compensated by the Micro-Step control method. In the chip mounter experiment, the gerber file was generated on the small chip mounter, printed at the actual size, and the solder cream was printed on the HASL-treated PCB in the same manner as the sample board fabrication. As a result of the experiment, unlike the 2012 micro components, parts such as SOIC and TQFP that require correction are twice as long as the component mounting time, but it can be confirmed that they are mounted relatively accurately. In addition, as a result of repeatedly measuring the error of the initial position 10 times, it was confirmed that a relatively small error of about 0.110mm occurs.

  • PDF

The Construction of Reverse Engineering System Appling Micro Stepper (마이크로 스테퍼를 활용한 역설계 시스템 구축)

  • 김수용;김민주;이승수;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.194-197
    • /
    • 2004
  • This paper is to develop of 3D reverse engineering equipment. The existing equipment didn't use in the field popularly as it is too expensive. So in this study, we build the reverse engineering system of simple construction using a LM guide and a laser sensor. Therefore we measured product using this equipment, this result compared with the CAD date.

  • PDF

Design and Tuning of Micro 5KVA Machine's AVR/PSS Robust Control Parameters (축소형 5KVA 동기발전기 AVR/PSS 강건한 제어정수 설계 및 튜닝)

  • Kim, D.J.;Moon, Y.H.;Kim, T.K.;Shin, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.165-168
    • /
    • 2000
  • This paper describes the guideline of design and tuning of practical Micro 5KVA machine's digital AVR/PSS control parameters by using the computer models and testing on-line AVR step test of laboratory simulator under the no-load or load conditions. The suggested procedures can be also applied to the large scaled machine's AVR/PSS control parameter tuning in KEPCO system.

  • PDF

Choice of Thresholding Technique in Micro-CT Images of Trabecular Bone Does Not Influence the Prediction of Bone Volume Fraction and Apparent Modulus

  • Kim, Chi-Hyun;Kim, Byung-Gwan;Guo, X. Edward
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.174-177
    • /
    • 2007
  • Trabecular bone can be accurately represented using image-based finite element modeling and analysis of these bone models is widely used to predict their mechanical properties. However, the choice of thresholding technique, a necessary step in converting grayscale images to finite element models which can thus significantly influence the structure of the resulting finite element model, is often overlooked. Therefore, we investigated the effects of thresholding techniques on micro-computed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to micro-CT images of trabecular bone which resulted in three unique finite element models for each specimen. Bone volume fractions and apparent moduli were predicted for each model and compared to experimental results. Our findings suggest that predictions of apparent properties agree well with experimental measurements regardless of the choice of thresholding technique in micro CT images of trabecular bone.