DOI QR코드

DOI QR Code

Choice of Thresholding Technique in Micro-CT Images of Trabecular Bone Does Not Influence the Prediction of Bone Volume Fraction and Apparent Modulus

  • Kim, Chi-Hyun (Department of Biomedical Engineering, Yonsei University) ;
  • Kim, Byung-Gwan (Department of Biomedical Engineering, Yonsei University) ;
  • Guo, X. Edward (Department of Biomedical Engineering, Columbia University)
  • Published : 2007.04.30

Abstract

Trabecular bone can be accurately represented using image-based finite element modeling and analysis of these bone models is widely used to predict their mechanical properties. However, the choice of thresholding technique, a necessary step in converting grayscale images to finite element models which can thus significantly influence the structure of the resulting finite element model, is often overlooked. Therefore, we investigated the effects of thresholding techniques on micro-computed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to micro-CT images of trabecular bone which resulted in three unique finite element models for each specimen. Bone volume fractions and apparent moduli were predicted for each model and compared to experimental results. Our findings suggest that predictions of apparent properties agree well with experimental measurements regardless of the choice of thresholding technique in micro CT images of trabecular bone.

Keywords

References

  1. S. Majumdar and H.K. Genant, 'Assessment of trabecular structure using high resolution magnetic resonance imaging,' Stud. Health Technol. Inform., vol. 40, pp. 81-96,1997
  2. S. Majumdar, H.K. Genant, S. Grampp, D.C. Newitt, V.H. Truong, J.C. Lin, and A. Mathur, 'Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging,' J. Bone Miner. Res., vol. 12, pp. 111-118, 1997 https://doi.org/10.1359/jbmr.1997.12.1.111
  3. J.L. Kuhn, SA. Goldstein, L.A. Feldkamp, R.W. Goulet, and G. Jesion, 'Evaluation of a microcomputed tomography system to study trabecular bone structure,' J. Orthop. Res., vol. 8, pp. 833-842,1990 https://doi.org/10.1002/jor.1100080608
  4. P. Ruegsegger, B. Koller, and R. Muller, 'A microtomographic system for the nondestructive evaluation of bone architecture,' Calcif. Tissue Int., vol. 58, pp. 24-29, 1996 https://doi.org/10.1007/BF02509542
  5. J.A. Hipp, A. Jansujwicz, C.A. Simmons, and B.D. Snyder, 'Trabecular bone morphology from micro-magnetic resonance imaging,' J. Bone Miner. Res., vol. 11, pp. 286-297,1996
  6. B. van Rietbergen, S. Majumdar, W. Pistoia, D.C. Newitt, M. Kothari, A. Laib, and P. Ruegsegger, 'Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images,' Technol. Health Care, vol. 6, pp. 413-420, 1998
  7. B. Van Rietbergen, R. Muller, D. Ulrich, P. Ruegsegger, and R. Huiskes, 'Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions,' J. Biomech., vol. 32,pp. 165-173, 1999 https://doi.org/10.1016/S0021-9290(98)00150-X
  8. J.P. van den Bergh, G.H. van Lenthe, A.R. Hermus, F.H. Carstens, A.G. Smals, and R. Huiskes, 'Speed of sound reflects Young's modulus as assessed by microstructural finite element analysis,' Bone, vol. 26, pp. 519-524, 2000 https://doi.org/10.1016/S8756-3282(00)00249-0
  9. G.L. Niebur, M.J. Feldstein, J.C. Yuen, T.J. Chen, and T.M. Keaveny, 'High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone,' J. Biomech., vol. 33, pp. 1575-1583, 2000 https://doi.org/10.1016/S0021-9290(00)00149-4
  10. G.L. Niebur, J.C. Yuen, A.J. Burghardt, and T.M. Keaveny, 'Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions,' J. Biomech., vol. 34, pp. 699-706, 2001 https://doi.org/10.1016/S0021-9290(01)00003-3
  11. G.L. Niebur, J.C. Yuen, A.C. Hsia, and T.M. Keaveny, 'Convergence behavior of high-resolution finite element models of trabecular bone,' J. Biomech. Eng., vol. 121, pp. 629-635, 1999 https://doi.org/10.1115/1.2800865
  12. B. Borah, G.J. Gross, T.E. Dufresne, T.S. Smith, M.D. Cockman, P.A. Chmielewski, M.W. Lundy, J.R. Hartke, and E.W. Sod, 'Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis,' Anal. Rec., vol. 265,pp.101-110, 2001 https://doi.org/10.1002/ar.1060
  13. G.T. Charras and R.E. Guldberg, 'Improving the local solution accuracy of large-scale digital image-based finite element analyses,' J. Biomech., vol. 33, pp. 255-259, 2000 https://doi.org/10.1016/S0021-9290(99)00141-4
  14. D. Ulrich, T. Hildebrand, B. Van Rietbergen, R. Muller, and P. Ruegsegger, 'The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing,' Stud. Health Technol. Inform., vol. 40, pp. 97-112,1997
  15. D. Ulrich, B. van Rietbergen, H. Weinans, and P. Ruegsegger, 'Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques,' J. Biomech., vol. 31, pp. 1187-1192,1998 https://doi.org/10.1016/S0021-9290(98)00118-3
  16. R.E. Guldberg, S.J. Hollister, and G.T. Charras, 'The accuracy of digital image-based finite element models,' J. Biomech. Eng., vol. 120, pp. 289-295, 1998 https://doi.org/10.1115/1.2798314
  17. A.J. Ladd, J.H. Kinney, D.L. Haupt, and S.A. Goldstein, 'Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus,' J. Orthop. Res., vol. 16, pp. 622-628, 1998 https://doi.org/10.1002/jor.1100160516
  18. J. Homminga, R. Huiskes, B. Van Rietbergen, P. Ruegsegger, and H. Weinans, 'Introduction and evaluation of a gray-value voxel conversion technique,' J. Biomech., vol. 34, pp. 513-517, 2001 https://doi.org/10.1016/S0021-9290(00)00227-X
  19. T. Hara, E. Tanck, J. Homminga, and R. Huiskes, 'The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties,' Bone, vol. 31, pp. 107-109, 2002 https://doi.org/10.1016/S8756-3282(02)00782-2
  20. T.M. Keaveny, X.E. Guo, E.F. Wachtel, T.A. McMahon, and W.C. Hayes, 'Trabecular bone exhibits fully linear elastic behavior and yields at low strains,' J. Biomech., vol. 27, pp. 1127-1136, 1994 https://doi.org/10.1016/0021-9290(94)90053-1
  21. S.J. Hollister, J.M. Brennan, and N. Kikuchi, 'A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress,' J. Biomech., vol. 27, pp. 433-444, 1994 https://doi.org/10.1016/0021-9290(94)90019-1
  22. X.E. Guo and S.A. Goldstein, 'Is trabecular bone tissue different from cortical bone tissue?' Forma, vol. 12, pp. 185-196, 1997