• 제목/요약/키워드: Micro-PIV

검색결과 95건 처리시간 0.02초

Effect of Particle Migration of the Characteristics of Microchannel Flow

  • Kim Y. W.;Jin S. W.;Kim S. W.;Yoo J. Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.119-124
    • /
    • 2004
  • Experimental study was conducted to characterize the flow effect of particle migration in a microchannel which can be used to deliver small amount of liquids, drugs, biological agents and particles in microfluidic devices. Fluorescent particles of $1\{mu}m$ diameter were used to obtain velocity profiles of the fluid in which large particles of $10\{mu}m$ diameter were suspended at different volume fraction of 0.6 and $0.8\%$. Measurements were obtained by using micro-PIV system which contains a Nd:YAG laser with a light of 532-nm wavelength, an inverted epi-fluorescent microscope and a cooled CCD camera to record particle images. The volume fraction of $\phi$ and the particle Reynolds number $Re_p$Rep were used as a parameter to assess the influence of the velocity profile of the suspensions. To expect the slip velocity between the particle and fluids, experiments were carried out at low volume fraction. It was shown that the velocity profile was not influenced by Rep but influenced by the volume fraction, which is in similar trend with the previous study.

  • PDF

초소수성 마이크로 채널 내 슬립 유동의 실험적 측정 (Experimental Study on Slip Flows in Superhydrophobic Microchannel)

  • 김지훈;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.84-87
    • /
    • 2007
  • Recently, many studies concern on the slip flow and slip length, which allow liquid flow to reduce drag force in microchannel. However, until now not enough investigation is performed experimentally to understand the slip flow in the superhydrophobic microchannel exhibiting riblet structures on vertical wall. Here we investigated and compared the slip flows according to the surface characteristics; hydrophilic, hydrophobic, and superhydrophobic wettabilities. Using the micro-PIV, velocity profiles can be obtained in the glass (hydrophilic), PDMS (hydrophobic), and micro-structured PDMS (superhydrophobic) microchannels. For both PDMS and superhydrophobic PDMS microchannels, we observed the slip effects showing the microscale slip lengths. Due to the micro-riblet, there are two distinctive flow characteristics on the riblet surface and the liquid meniscus in the valleys.

  • PDF

딤플을 적용한 평판에 대한 항력 감소 연구 (Study on the Drag Reduction of 2-D Dimpled-Plates)

  • 백부근;편영식;김준형;김경열;김기섭;정철민;김찬기
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.333-339
    • /
    • 2012
  • The main objective of the present study is to investigate the roles of the micro-dimpled surface on the drag reduction. To investigate the effectiveness of the micro-dimpled surface, the flat plates are prepared. The micro-size dimples are directly carved on the metal surface by ultrasonic nano-crystal surface modification (UNSM) method. Momentum of the main flow is increased by the dimple patterns within the turbulent boundary layer (TBL), however, there is no significant change in the turbulence intensity in the TBL. The influence of dimple patterns is examined through the flow field survey near the flat plate trailing edge in terms of the profile drag. The wake flow velocities in the flat plate are measured by PIV technique. The maximum drag reduction rate is 4.6% at the Reynolds number of $10^6{\sim}10^7$. The dimples tend to increase the drag reduction rate consistently even at high Reynolds number range.

미세튜브 내부를 흐르는 혈액유동의 유변학적 특성에 대한 in-vitro 연구 (In-vitro Study on Hemorheological Behaviors of Blood Flow Through a Micro Tube)

  • 강명진;지호성
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.99-105
    • /
    • 2010
  • In order to obtain velocity profile of blood flow with high spatial resolution, a micro PIV technique consisted of a fluorescent microscope, double-pulsed YAG laser, cooled CCD camera was applied to in-vitro blood flow experiment through a micro round tube of a diameter $100{\mu}m$. Velocity distributions of blood flow for rabbit were obtained. The viscosity profiles for shear rate were found at flowing condition. To provide hemorheological characteristics of blood flow, the viscosities for shear rate were evaluated. The viscosity of blood also steeply increase by decreasing shear rate resulting in Non-Newtonian flow, especially in low shear rate region caused by RBC rheological properties. The results show typical characteristics of Non-Newtonian characteristics from the results of velocity profile and viscosity for blood flow. From the inflection points, cell free layer and two-phase flow consisted with plasma and suspensions including RBCs can be separated.

칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구 (Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model)

  • 복정진;장조원
    • 한국항공우주학회지
    • /
    • 제43권9호
    • /
    • pp.765-772
    • /
    • 2015
  • 칼새 비행의 생체모방 초소형 비행체 적용 가능성을 확인하기 위한 공력측정과 위상동기 PIV 연구가 수행되었다. 2축 회전자유도의 로봇 날개 모델과 불어내기식 풍동을 사용하였다. 비틀림 각은 ${\pm}0$, ${\pm}5$, ${\pm}10$, ${\pm}20$도의 진폭을 갖고, 스트로크각은 90도의 위상차를 갖는 단순조화함수로 변화시켰다. 비틀림 각에 따른 시간에 대한 양력계수 변화는 작은 공력감소와 지연만을 나타내며 주목할 만한 차이를 보이지 않았다. 그러나 항력은 작은 비틀림 각 변화가 큰추력을 생성할 수 있음을 보여주었다. 이러한 것들은 칼새가 비행 중에 작은 비틀림 각을 사용하는 이유를 간접적으로 설명해 준다. PIV연구 결과는 공력지연이 날개주위의 와류구조와 밀접한 관계있다는 것을 보여준다. 이러한 결과는 칼새 모방형 초소형비행체 설계에 있어 비틀림 각은 필수적인 파라미터로서 반드시 고려되어야 함을 의미한다.

유정란 태아외부혈관 내부 혈액유동에 대한 혈류역학적 연구 (Hemodynamic Analysis of Blood Flows in the Extraembryonic Blood Vessels of Chicken Embryos)

  • 이정엽;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.6-9
    • /
    • 2008
  • Analyzing the characteristics of blood flow in the blood vessels is very important to diagnose the circulatory diseases. In order to investigate the hemodynamic characteristics in vivo, the measurements of blood flows inside the extraembryonic arterial and venous blood vessels of chicken embryos were carried out using an in vivo micro-PIV technique. The circulatory diseases are closely related with the formation of abnormal hemodynamic shear stress regions, thereby it is important to get blood velocity and vessel's morphological information according to the vessel configuration and the flow conditions. In this study, the flow images of RBCs in blood vessels were obtained using a high-speed CMOS camera with a spatial resolution of approximately 14.6${\mu}$m${\times}$14.6${\mu}$m in the whole circulation network of blood vessels. The blood flows in the veins and arteries show steady laminar and unsteady pulsatile flow characteristics, respectively. The mean blood flows merged (in veins) and bifurcated (in arteries) smoothly into the main blood vessel and branches, respectively, without any flow separation or secondary flow which accompanying large variation of shear stress. Vorticity was high in the inner regions for both types of vessels, where the radius of curvature varied greatly. The instantaneous flows in the arterial blood vessels showed noticeable pulsatility due to the heart beat, and the main features of the velocity waveforms, including pulsatile shape, retrograde flow, mean velocity, maximum velocity and pulsatile frequency, were significantly dependent on the pulsatile condition which dominates the arterial blood flow. In near future, these in vivo experimental results of blood flow measured in various extraembryonic blood vessels would be very useful to understand the hemodynamic characteristics of human blood flows and various blood flow researches for clinically useful hemodynamic discoveries as well.

  • PDF

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

평판 위 흐름 Defect Law 영역의 난류 특성 연구 (Investigation of Turbulence Characteristics of Defect Law Region over Flat plate)

  • 서성부;박일룡;정광효;임정관;김광수;김진
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.268-273
    • /
    • 2014
  • To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.

MEMS 기술을 이용한 미소 리블렛 필름 제작 및 항력 감소에의 응용 (Fabrication of a Micro-Riblet Film Using MEMS Technology and Its Application to Drag Reduction)

  • 한만희;허정기;이상준;이승섭
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.991-996
    • /
    • 2002
  • This paper presents the fabrication method of a micro-riblet film (MRF) using MEMS technology and the experimental results of the drag reduction of an airfoil with MRFs. Riblets having grooved surface in the streamwise direction has been proven as an effective passive control technique of the drag reduction. A V-grooved pattern on (100) silicon wafer is etched with anisotropic bulk micromachining. The MRF is completed by replicating the V-grooved pattern with polydimethylsiloxane (PDMS). Experiments were performed by measuring a velocity field behind the trailing edge of a NACA 0012 airfoil with and without MRFs in a closed-type subsonic wind tunnel using particle image velocimetry (PlV) technique. The MRF provides about 3.8 % drag reduction compared to the drag on a smooth airfoil when the freestream velocity of wind tunnel is 3.3 m/s.

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.