DOI QR코드

DOI QR Code

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model

칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구

  • Bok, Jung Jin (Institute for Aviation Safety and System Management, Korea Aerospace University) ;
  • Chang, Jo Won (Department of Aeronautical Science and Flight Operation, Korea Aerospace University)
  • Received : 2015.06.18
  • Accepted : 2015.08.06
  • Published : 2015.09.01

Abstract

Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

칼새 비행의 생체모방 초소형 비행체 적용 가능성을 확인하기 위한 공력측정과 위상동기 PIV 연구가 수행되었다. 2축 회전자유도의 로봇 날개 모델과 불어내기식 풍동을 사용하였다. 비틀림 각은 ${\pm}0$, ${\pm}5$, ${\pm}10$, ${\pm}20$도의 진폭을 갖고, 스트로크각은 90도의 위상차를 갖는 단순조화함수로 변화시켰다. 비틀림 각에 따른 시간에 대한 양력계수 변화는 작은 공력감소와 지연만을 나타내며 주목할 만한 차이를 보이지 않았다. 그러나 항력은 작은 비틀림 각 변화가 큰추력을 생성할 수 있음을 보여주었다. 이러한 것들은 칼새가 비행 중에 작은 비틀림 각을 사용하는 이유를 간접적으로 설명해 준다. PIV연구 결과는 공력지연이 날개주위의 와류구조와 밀접한 관계있다는 것을 보여준다. 이러한 결과는 칼새 모방형 초소형비행체 설계에 있어 비틀림 각은 필수적인 파라미터로서 반드시 고려되어야 함을 의미한다.

Keywords

References

  1. D. E. Alexander, Nature's Flyers, The Johns Hopkins University Press, 2002.
  2. PIP, Nano Air Vehicle Program, BAA-06-06, DSO(Defence Sciences Office), DARPA.
  3. Brochure, "Smartbird", FESTO corporate, 2011.
  4. Woo-gil Song, "An Experimental Study of a Flapping Wing with Folding Motion" Master Thesis, Korea Aerospace University, 2009
  5. P. Henningsson, G. R. Spedding, A. Hede nstrom, "Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel", The Journal of Experimental Biology, Vol. 211, 2008, pp. 717-730. https://doi.org/10.1242/jeb.012146
  6. John J. Videler, Avian Flight, OXFORD, UK, 2005, pp. 40.
  7. Bruderer, B. and Weitnauer, E., "Radarbeo bachtungen uber Zug und Nachtfluge des Mau erseglers (Apus apus)", Rev. Suisse Zool. Vol. 79, pp. 1190-1200.
  8. Backman, J. and Alerstam, T., "Confronting the winds: orientation and flight behaviour of the roosting swift, Apus apus", Proc. R. Soc. B, Vol. 268, 2001, pp. 1081-1087. https://doi.org/10.1098/rspb.2001.1622
  9. P. Henningsson, L. Christoffer Johansson, and Anders Hedenstrom, "How swift are swifts Apus apus?", Journal of Avian Biology, Vol. 41, 2010, pp. 94-98. https://doi.org/10.1111/j.1600-048X.2009.04850.x
  10. D. Lentink, U. K. Muller, E. J. Stamhuis, R. de Kat, W. van Gestel, L. L. M. Veldhuis, P. Henningsson, A. Hedenstrom, J. J. Videler & J. L. van Leeuwen, "How swifts control their glide performance with morphing wings," Nature, Vol. 446, 2007, pp. 1082-1085. https://doi.org/10.1038/nature05733
  11. J. J. Videler, E. J. Stamhuis, and G. D. E. Povel, "Leading-Edge Vortex Lifts Swifts," Science, Vol. 306, 2004, pp. 1960-1962. https://doi.org/10.1126/science.1104682
  12. Jong-Seob Han, Jo-Won Chang, and Sun-Tae Kim, "Reynolds number dependency of an insect-based flapping wing," Bioinspiration and Biomimetics, Vol. 9, 2014, 046012. https://doi.org/10.1088/1748-3182/9/4/046012
  13. Jong-seob Han, Jo Won Chang, Joong-kw an Kim, and Jae-hung Han, "Role of Trailing- Edge Vortices on the Hawkmothlike Flapping Wing," Journal of Aircraft, Vol. 52, 2015, pp. 1256-1266. https://doi.org/10.2514/1.C032768
  14. J. S. Han, and J. W. Chang, "Design and Control of 3-axis Manipulator for an Insect Flapping Motion," KSAS Fall Conference, 2013, pp. 13-15.
  15. Joseph Katz, Allen Plotkin, "Low-speed aerodynamics 2/E", Cambridge University Press, 2001.
  16. Dong-Ha Kim, "An Experimental Study of Unsteady Flow Characteristics over an Oscill ation Airfoil at Low Reynolds Numbers", Ph.D, Dissertation, Korea Aerospace University, 2010.
  17. David Lentink and Roeland de Kat, "Gliding Swifts Attain Laminar Flow over Rough Wings," PLoS ONE, Vol. 9, No. 6, 2014.