Browse > Article
http://dx.doi.org/10.5574/KSOE.2014.28.4.268

Investigation of Turbulence Characteristics of Defect Law Region over Flat plate  

Suh, Sung-Bu (Naval Architecture Ocean Engineering, Dong-Eui University)
Park, Il-Ryong (Naval Architecture Ocean Engineering, Dong-Eui University)
Jung, Kwang-Hyo (Naval Architecture Ocean Engineering, Pusan National University)
Lim, Jung-Gwan (Naval Architecture Ocean Engineering, Pusan National University)
Kim, Kwang-Soo (Advanced Ship Research Division, KRISO)
Kim, Jin (Advanced Ship Research Division, KRISO)
Publication Information
Journal of Ocean Engineering and Technology / v.28, no.4, 2014 , pp. 268-273 More about this Journal
Abstract
To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.
Keywords
Turbulent boundary layer; Particle image velocimetry; Reynolds stress; Taylor micro length scale; Kolmogorov length scale;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Paik, B.G., Pyun, Y.S., Kim, J.H., Kim, K.Y., Kim, K.S., Jung, C.M., Kim, C.K., 2012. Study on the Drag Reduction of 2-D Dimpled-Plates. Journal of Society of Naval Architects of Korea, 49(4), 333-339.   과학기술학회마을   DOI   ScienceOn
2 Lewis, E.V., 1988. Principles of Naval Architecture Second Revision, Volume II., The Society of Naval Architects and Marine Engineers, New Jersey.
3 Nagamatsu, T., Kodama, T., Kakugawa, A., Takai, M., Murakami, K., Ishikawa, K., Kamirisa, H., Ogiwara, S., Yoshida, Y., Suzuki, T., Toda, Y., Kato, H., Ikemoto, A., Yamatani, S., Imo, S., Yamashita, K., 2002. A Full-scale Experiment on Microbubbles for Skin Friction Reduction using SEIUN MARU - Part 2: The Full-scale experiment. Journal of the Society of Naval Architects of Japan, 192, 15-28.
4 Paik, B.G., Kim, K.R., Kim, J.H., Kim, K.S., Ahn, J.W., Kim, K.S., 2013. Skin Friction Measurement and Its Analysis Using Flow Visualization Techniques. Journal of Ships & Ocean Engineering, 53, 19-26.
5 Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.
6 Raffel, M., Willert, C.E., Kompenhans, J., 1998. Particle Image Velocimetry. Springer-Verlag, Berlin.
7 Schilichting, H., Gersten, K., 2000. Boundary Layer Theory. Springer.
8 An, S.M., Ahn, H.T., 2011. Feasibility Study About Friction Drag Reduction Using Partial Air Cavity. School of Naval Architecture & Ocean Engineering, University of Ulsan, 535-540.
9 Clauser, F.H., 1954. Turbulent Boundary Layers in Adverse pressure Gradients. Journal of the Aeronautical Sciences, 21(2), 91-108.   DOI
10 Crimaldi, J.P., 1998. Turbulence Structure of Velocity and Scalar Fields Over a Bed of Model Bivalves. Stanford University.
11 Jacob, B., Olivieri, A., Miozzi, M., Campana, E.F., Piva, R., 2010. Drag Reduction by Microbubbles in a Turbulent Boundary Layer. Physics of Fluids, 22(115104), 1-10.
12 Kim, D.S., Kim, H.T., Kim, W.J., 2003. Experimental Study of Friction Drag Reduction in Turbulent Flow with Microbubble Injection. Journal of Society of Naval Architects of Korea, 40(3), 1-8.   과학기술학회마을   DOI
13 Kwon, S.H., Yoon, S.Y., Kim, K.C., 2004. Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers. Journal of the Korean Society of Mechanical Engineers, 28(7), 834-841.   과학기술학회마을   DOI
14 Latorre, R., Miller, A., Philips, R., 2003. Micro-bubble Resistance Reduction on a Model SES Catamaran. Ocean Engineering, 30, 2297-2309.   DOI   ScienceOn
15 Park, H., An, N.H., Park, S.H., Chun, H.H., Lee, I.W., 2010. PIV Investigation on the kin Friction Reduction Mechanism of Outer-layer Vertical Blades. Journal of the Korean Society of Visualization, 9(1), 20-28.   DOI   ScienceOn