DOI QR코드

DOI QR Code

Fabrication of a Micro-Riblet Film Using MEMS Technology and Its Application to Drag Reduction

MEMS 기술을 이용한 미소 리블렛 필름 제작 및 항력 감소에의 응용

  • 한만희 (포항공과대학교 학부 기계공학과) ;
  • 허정기 (포항공과대학교 대학원 기계산업공학부) ;
  • 이상준 (포항공과대학교 기계공학과) ;
  • 이승섭 (포항공과대학교 기계공학과)
  • Published : 2002.07.01

Abstract

This paper presents the fabrication method of a micro-riblet film (MRF) using MEMS technology and the experimental results of the drag reduction of an airfoil with MRFs. Riblets having grooved surface in the streamwise direction has been proven as an effective passive control technique of the drag reduction. A V-grooved pattern on (100) silicon wafer is etched with anisotropic bulk micromachining. The MRF is completed by replicating the V-grooved pattern with polydimethylsiloxane (PDMS). Experiments were performed by measuring a velocity field behind the trailing edge of a NACA 0012 airfoil with and without MRFs in a closed-type subsonic wind tunnel using particle image velocimetry (PlV) technique. The MRF provides about 3.8 % drag reduction compared to the drag on a smooth airfoil when the freestream velocity of wind tunnel is 3.3 m/s.

Keywords

References

  1. Wang, J. J., Lan, S. L. and Chen, G., 2000, 'Experimental Study on the Turbulent Boundary Layer Flow over Riblets Surface,' Fluid Dynamics Research, Vol. 27, pp. 217-229 https://doi.org/10.1016/S0169-5983(00)00009-5
  2. Tsao, T., Jiang, F., Miller, R., Tai, Y. C., Gupta B., Goodman R., Tung S. and Ho C. M., 1997, 'An Integrated MEMS System for Turbulent Boundary Layer Control,' Tranducer '97, pp. 315-318 https://doi.org/10.1109/SENSOR.1997.613647
  3. Kumar, S. M., Reynolds, W. C. and Kenny, T W., 1999, 'MEMS Based Transducers for Boundary Layer Control,' MEMS'99, pp. 135-140 https://doi.org/10.1109/MEMSYS.1999.746790
  4. Sherman, F., Tung, S., Kim, C. J., Ho, C. M. and Woo, J., 1999, 'Flow Control by Using High-Aspect-Ratio, In-Plane Microactuators,' Sensors and Actuators A, Vol. 73, pp. 169-175 https://doi.org/10.1016/S0924-4247(98)00267-2
  5. Walsh, M., 1983, 'Riblets as a Viscous Drag Reduction Technique,' AIAA J., Vol. 21. No.4, pp. 485-486 https://doi.org/10.2514/3.60126
  6. Choi, K. S. and Orchard, D. M., 1997, 'Turbulence Management Using Riblets for Heat and Momentum Transfer,' Experimental Thermal and Fluid Sci. Vol. 15, pp. 109-124 https://doi.org/10.1016/S0894-1777(97)00047-2
  7. Bruse, M., Bechert, D. W., van der Hoeven, J. G. Th., Hage, W. and Hoppe, G., 1993, 'Experiments with Conventional and Novel Adjustable Drag-Reducing Surfaces,' In Near-Wall Turbulent Flows, So, R. M. C., Speziale, C. G. and Launder, B. E., Eds., pp. 719-738, Elsevier, Amsterdam
  8. Marentic, F. J. and Morris, T L., 1992, 'Drag Reduction Article,' United States Patent, Patent No. 5133516
  9. Jo, B. H., Van Lerberghe, L. M., Motsegood, K. M. and Beebe, D. J., 2000, 'Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,' J. MEMS, Vol. 9, No. 1, pp. 76-81 https://doi.org/10.1109/84.825780
  10. Duffy, D. C., McDonald, J. C.. Schueller, O. J. A. and Whitesides, G. M., 1998, 'Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),' Anal Chem., Vol. 70, No. 23 https://doi.org/10.1021/ac980656zS0003-2700(98)00656-8
  11. Lee, S. J., 2002, 'PIV Velocity Field Measurement Technique and Application,' Postech