• 제목/요약/키워드: Micro-CHP

검색결과 19건 처리시간 0.025초

소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션 (Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System)

  • 조우진;이관수;김인규
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

초소형 열병합발전시스템(${\mu}CHP$) 운전거동 시뮬레이션 프로그램 개발 (Heat Transfer in a Duct with Various Cross Section of Ribs)

  • 조우진;이관수;김인규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.172-176
    • /
    • 2009
  • We developed a program, "CogenSim-$\mu$," to simulate the operation of micro-combined heat and power (${\mu}CHP$) system. The CogenSim-$\mu$ can reflect the variation of energy efficiency by handling the real-time loads (heat and power) fluctuation. The result obtained using this program was compared with the real operation of 30 kWe gas engine driven ${\mu}CHP$. It was found that the CogenSim-$\mu$ could predict the amount of generated-power, recovered-heat and consumed-fuel with the error less than 3%, and heat and power efficiency with the error less than 4%. The CogenSim-$\mu$ reconstructed the profile of on-off cycle, which represented the operation of a facility, with more than 93% accuracy. The CogenSim-$\mu$ can reflect the effects of various factors such as size of thermal storage tank, desired temperature of reservoir water, natural frequency of generator, etc. As a result, the CogenSim-$\mu$ can be used to optimize the ${\mu}CHP$ operation.

  • PDF

환경비용 및 운용방식을 고려한 마이크로그리드 최적 엔지니어링 연구 (Optimal Engineering of MicroGrid on the Environmental Cost and Operation Type)

  • 박중성;신혜경;이덕수;이학성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.369-371
    • /
    • 2008
  • Environmental issue is one of the key factors to industry area using fossil fuels, because it accelerates the global warming. So it is supposed to reduce greenhouse gases around the developed nations of the world at times go. This issue is especially for the power industry. Under this background, CHP system that consists of Distributed Energy Resources (DER) system, such as natural power system (wind, solar) and fuel-cell, co-generation, also known as CHP (Combined heat and power), has been developed greatly during the last 10 years. This paper adopts optimal model using GAMS to develop methods for conducting an integrated assessment of MicroGrid system.

  • PDF

병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구 (The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital)

  • 김병수;홍원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

병원건물 분산에너지시스템 도입에 따른 경제성분석 (The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital)

  • 홍원표;김병수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

환경비용 및 운용방식에 따른 MicroGrid 경제성 분석 (Economic Feasibility of MicroGrid on the Environmental Cost and Operation Type)

  • 박중성;신혜경;이덕수;최인선;최영준
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1738-1743
    • /
    • 2008
  • Environmental issue is one of the key factors to industry area using fossil fuels, because it accelerates the global warming. So it is supposed to reduce greenhouse gases around the developed nations of the world at times go. This issue is especially for the power industry. Under this background, MicroGrid system that consists of Distributed Energy Resources (DER) system, such as natural power system (wind, solar) and fuel-cell, co-generation, also known as CHP (Combined heat and power), has been developed greatly during the last 10 years. This paper adopts optimal model using GAMS to develop methods for conducting an integrated assessment of MicroGrid system.

가정용 열병합 시스템의 국내 도입에 따른 온실가스 저감효과 예측 (Impact of Residential CHP Systems on Greenhouse Gas Emissions in Korea)

  • 강병하;윤창호;안준
    • 설비공학논문집
    • /
    • 제25권10호
    • /
    • pp.555-561
    • /
    • 2013
  • The effects of applying the micro CHP system to the domestic sector in Korea were investigated using annual cooling and heating demand data. Four prime movers, micro gas turbine, PEMFC, gas engine and Stirling engine, were compared for three operational modes. Two way buy-back was assumed for both electricity and heat. The Stirling engine gave the lowest $CO_2$ emission per energy for 300kWh monthly electricity production. However, PEMFC became more effective when considering PURPA criteria. PEMFC generated the least greenhouse gas with higher electrical efficiency for cooling. The Stirling engine, however, became competitive for heating with higher total efficiency.

연료전지와 마이크로 열병합 발전기술 (Fuel cell based CHP technologies for residential sector)

  • 손영목
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.251-258
    • /
    • 2016
  • 연료전지는 전기를 발전하면서 동시에 열도 생산하며, 본 고는 이 두 가지를 함께 이용하는 가정용의 마이크로 연료전지-열병합발전(${\mu}FC$-CHP) 시스템에 관한 조사보고서이다. 열병합발전 시스템을 구성하는 몇 가지 방안 중에서 연료전지는 전기와 열 효율을 합쳐 90%가 넘는 가장 높은 에너지 효율을 갖는 시스템을 구현할 수 있어 유용성이 높다. 연료전지에는 크게 다섯 가지 종류가 있으며, 이 중 가정용 ${\mu}FC$-CHP로 적합한 것은 프로톤교환 막연료전지(PEMFC)와 고체산화물연료전지(SOFC)이다. ${\mu}FC$-CHP시스템은 독립전원으로서 송배전 손실을 줄일 수 있고 전기생산단가를 낮출 수 있으며, 오염물질을 배출하지 않는 친환경 기술이란 점 등의 장점이 많다. 단점은 초기 투자비용이 높다는 점인데, 기술의 발달로 제작 단가를 줄여 이를 해결해나가고 있다. 현재는 일본이 시장을 선점하고 있으나 우리나라도 100만대 보급 계획을 가지고 있고, 정부가 반 정도의 설치보조금을 제공하여 시장을 견인하고 있다. 본 고에서는 이와 함께 연료전지와 열병합발전을 연결하는 기술적 내용 및 각국의 동향을 기술한다.

흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석 (Performance Analysis of Micro-turbine CHP System with Absorption Chiller)

  • 윤린;한승동
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.540-545
    • /
    • 2007
  • The performance of microturbine CHP system equipped with an absorption chiller was analyzed by modelling of a microturbine and an absorption chiller. The microturbine having recuperator was simulated by the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microtubune were simulated, and this results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type having solution heat exchanger. When heat input to the generator increased, the heat transfer rate and UA of the heat exchangers of the absorption chiller proportionally increased. Besides, the COP of the absorption chiller increased with increase of the heat input to the generator under the sufficient size of the evaporator condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller increased by two times, and UA values for evaporator and condenser were increased by 3.9 and 3.4 times, respectively, under the same COP condition.

  • PDF

하수슬러지 Biogas의 신재생에너지화 타당성 연구 (A Feasibility Study for Renewable Energy from Sewage Sludge Biogas)

  • 강호;이혜미;조상선;박선욱;정지현
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.754-760
    • /
    • 2010
  • This study was carried out not only to evaluate optimal operating condition to increase biogas production, but also to estimate feasibility of renewable energy from anaerobic digester of sewage sludge. Semi- continuous Fed and Mixed Reactors (SCFMRs) were operated in various condition to quantify the reactor variables. The result of SCFMR operation showed that the biogas productivity and total volatile solids (TVS) removal of total solids (TS) 4% reactor at hydraulic retention time (HRT) 20 days with Organic Loading Rate (OLR) of $1.45kg/m^3-d$ were $0.39m^3/m^3-d$ and 26.7%, respectively which was two times higher than that of TS 2.5% reactor. Consequently the daily biogas production of $20,000m^3$ would be possible from the total volume of $52,000m^3$ of anaerobic digesters of the municipal wastewater treatment plant in D city. In feasibility study for the Biogas utilization, combined heat and power system (CHP) and CNG gasification were examined. In case of CHP, the withdrawal period of capital cost for gas-engine (GE) and micro gas-turbine (MGT) were 7.7 years and 9.1 years respectively. biogas utilization as Clean Natural Gas (CNG) shows lower capital cost and higher profit than that of CHP system. CNG gasificaion after biogas purification is likely the best alternative for Biogas utilization which have more economic potential than CHP system. The withdrawal period of capital cost appeared to be 2.3 years.