DOI QR코드

DOI QR Code

Fuel cell based CHP technologies for residential sector

연료전지와 마이크로 열병합 발전기술

  • Son, Young Mok (ReSEAT Program, Korea Institute of Science and Technology Information)
  • 손영목 (한국과학기술정보연구원, ReSEAT프로그램)
  • Received : 2016.09.19
  • Accepted : 2016.11.25
  • Published : 2016.12.30

Abstract

This article reports current status of micro fuel cell-combined heat and power (${\mu}FC$-CHP) systems which utilize both power and heat generated by fuel cells. There are several options for constructing CHP systems and among them, fuel cells are the most useful and their total energy efficiency combining heat and power can reach up to about 90%. Fuel cells are classified as five types based on the electrolyte, but the most suitable fuel cell types for the ${\mu}FC$-CHP system are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). ${\mu}FC$-CHP systems have several advantages such as decrease of the transmission-distribution loss, reduced costs of electricity due to distributed power generation, and environmental-friendliness owing to zero emission. The main drawback of the ${\mu}FC$-CHP systems is the high initial investment, however, it keeps decreasing as the technology development reduces production costs. Currently, Japan is the most leading country of the ${\mu}FC$-CHP market, however, Korea tries to expand the market by planning the deployment of 1 million units of ${\mu}FC$-CHP systems and governmental subsidiary supporting of half of the install price. In this report, integration technologies for connecting FC and CHP, and technology trends of leading countries are presented as well.

연료전지는 전기를 발전하면서 동시에 열도 생산하며, 본 고는 이 두 가지를 함께 이용하는 가정용의 마이크로 연료전지-열병합발전(${\mu}FC$-CHP) 시스템에 관한 조사보고서이다. 열병합발전 시스템을 구성하는 몇 가지 방안 중에서 연료전지는 전기와 열 효율을 합쳐 90%가 넘는 가장 높은 에너지 효율을 갖는 시스템을 구현할 수 있어 유용성이 높다. 연료전지에는 크게 다섯 가지 종류가 있으며, 이 중 가정용 ${\mu}FC$-CHP로 적합한 것은 프로톤교환 막연료전지(PEMFC)와 고체산화물연료전지(SOFC)이다. ${\mu}FC$-CHP시스템은 독립전원으로서 송배전 손실을 줄일 수 있고 전기생산단가를 낮출 수 있으며, 오염물질을 배출하지 않는 친환경 기술이란 점 등의 장점이 많다. 단점은 초기 투자비용이 높다는 점인데, 기술의 발달로 제작 단가를 줄여 이를 해결해나가고 있다. 현재는 일본이 시장을 선점하고 있으나 우리나라도 100만대 보급 계획을 가지고 있고, 정부가 반 정도의 설치보조금을 제공하여 시장을 견인하고 있다. 본 고에서는 이와 함께 연료전지와 열병합발전을 연결하는 기술적 내용 및 각국의 동향을 기술한다.

Keywords

References

  1. H. Nakagami, C. Murakoshi, Y. Iwafune, International comparison of household energy consumption and its indicator, ACEEE Summer Study Energy Effic. Build.; Pacific Grove, CA, USA, 2008, 214-224. http://goo.gl/F6Fxjv(accessed 23.03.15).
  2. Harikishan R. Ellamla, Iain Staffell, Piotr Bujlo, Bruno G. Pollet, Sivakumar Pasupathi, "Current status of fuel cell based combined heat and power systems for residential sector", Journal of Power Sources 293, 2015, pp.312-328. https://doi.org/10.1016/j.jpowsour.2015.05.050
  3. N. Zuliani, R. Taccani, "Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis," Appl. Energy 97, 2012, pp. 802-808. https://doi.org/10.1016/j.apenergy.2011.12.089
  4. A.D. Hawkes, I. Staffell, D. Brett, "Fuel cells for micro-combined heat and power generation." Energy Environ. Sci. 2, 2009, pp. 729-744. https://doi.org/10.1039/b902222h
  5. J. Spendelow, J. Marcinkoski, D. Papageorgopoulos, Micro CHP Fuel Cell System Targets, Department of Energy (DOE), USA, 2012. http://goo.gl/fqDvZ1.
  6. I. Staffell, Fuel Cells for Domestic Heat and Power: Are they Worth it?, University of Birmingham, 2009. http://goo.gl/JB4Yjp.
  7. T. Shimizu, Panasonic's Latest Technology Trend in ENE-farm and Penetration Strategy, FC-EXPO, Tokyo, 2013.
  8. J.M. Zalc, D.G. Loffler, "Fuel processing for PEM fuel cells: transport and kinetic issues of system design", J. Power Sources, 111(1), 2002, pp. 58-64. https://doi.org/10.1016/S0378-7753(02)00269-0
  9. P. Bujlo, S. Pasupathi, J. Scholta Ulleberg, M.V. Nomnqa, A. Rabiu, et al., "Validation of an externally oil-cooled 1 kWel HT-PEMFC stack operating at various experimental conditions", Int. J. Hydrog. Energy 38, 2013, pp. 9847-9855. https://doi.org/10.1016/j.ijhydene.2013.05.174
  10. Y. S. Seo, A. Shirley, S.T. Kolaczkowski, "Performance of fuel cell integerated combined heat and power" J. Power Sources 108, 2002, pp. 213-225. https://doi.org/10.1016/S0378-7753(02)00027-7
  11. B.D. James, A.B. Spisak, W.G. Colella, Manufacturing Cost Analysis of Stationary Fuel Cell Systems, 2012. Arlington, http://goo.gl/CR2d80.
  12. World Energy Outlook (WEO). http://www.worldenergyoutlook.org .
  13. Carbon Footprint of Electricity Generation, 2011. London, http://goo.gl/NwURez.
  14. I. Staffell, R. Green, "The cost of domestic fuel cell micro-CHP systems" Int. J. Hydrog. Energy 38, 2013, pp. 1088-1102. https://doi.org/10.1016/j.ijhydene.2012.10.090