• Title/Summary/Keyword: Micro robotic system

Search Result 31, Processing Time 0.032 seconds

Design of a Low-Cost Micro Robotic System for Developing and Validation Control Algorithms

  • Isarakorn, Don;Suksrimuang, Chatchai;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1945-1948
    • /
    • 2004
  • This paper describes the design and construction of a micro robotic system addressing such important aspects as versatility and low cost for rapid development and test of new control algorithm. The design and structure of micro robots are presented in detail. The supervision oriented concept is designed for controlling a group of micro robots. In this concept, the vision system recognizes the environment and the host computer decides the micro robot action based on the information from the vision system. In addition, the micro robots can be implemented cheaply and small in size because the structure of supervision oriented system is simplest. The experimental results and the performance of the proposed micro robotic system are discussed.

  • PDF

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

A Micro-robotic Platform for Micro/nano Assembly: Development of a Compact Vision-based 3 DOF Absolute Position Sensor (마이크로/나노 핸들링을 위한 마이크로 로보틱 플랫폼: 비전 기반 3자유도 절대위치센서 개발)

  • Lee, Jae-Ha;Breguet, Jean Marc;Clavel, Reymond;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • A versatile micro-robotic platform for micro/nano scale assembly has been demanded in a variety of application areas such as micro-biology and nanotechnology. In the near future, a flexible and compact platform could be effectively used in a scanning electron microscope chamber. We are developing a platform that consists of miniature mobile robots and a compact positioning stage with multi degree-of-freedom. This paper presents the design and the implementation of a low-cost and compact multi degree of freedom position sensor that is capable of measuring absolute translational and rotational displacement. The proposed sensor is implemented by using a CMOS type image sensor and a target with specific hole patterns. Experimental design based on statistics was applied to finding optimal design of the target. Efficient algorithms for image processing and absolute position decoding are discussed. Simple calibration to eliminate the influence of inaccuracy of the fabricated target on the measuring performance also presented. The developed sensor was characterized by using a laser interferometer. It can be concluded that the sensor system has submicron resolution and accuracy of ${\pm}4{\mu}m$ over full travel range. The proposed vision-based sensor is cost-effective and used as a compact feedback device for implementation of a micro robotic platform.

The Development of High Precision Manipulator and Micro Gripper (미세 작업을 위한 마이크로-나노 로봇개발)

  • Lee, Jong-Bae;Park, Chang-Woo;Kim, Bong-Seok;Park, Jun-Sik;Sung, Ha-Gyeong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • In this paper, a robotic system which consists of a precision manipulator and a micro gripper for a micro system assembly is presented. By the experiment, we proved that the developed the system gives acceptable performance when minute operations. Developed the micro-nano robot is actuated by newly proposed modular revolute and prismatic actuators. As an end-effector of this system, micro gripper is designed and fabricated with MEMS technology and the displacement of jaw is up to 142.8 micro meter. We think that new robot system will be appropriate for micro system assembly tasks and life science application.

  • PDF

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

The Control of a flexible Robotic Finger Driven by PZT (압전소자로 구동되는 유연성 로봇 핑거의 제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Dexterous Manipulation from Pinching to Power Grasping-Effective strategy according to object dimensions and grasping position-

  • Hasegawa, Yasuhisa;Rukuda, Toshio;Kanada, Kensaku
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.24-27
    • /
    • 2003
  • This paper discusses practical strategies for transition from a pinching to a power grasping, where a multi-fingered hand mounted on a robotic arm envelops a cylindrical object on a table. When the manipulation system grasps a cylindrical object like a pen on a desk, a complete enveloping is not impossible in the initial configuration. The system firstly pinches the object only with two or three fingers and then grasp it with fingers and a palm after regrasping. In this pinching-grasping transition maneuver, human unconsciously selects proper strategy according to some conditions including object dimensions and initial pinching positions. In this paper we therefore develop six possible strategies for this pinching-grasping transition and then investigate their performances for some objects with various dimensions and various grasping positions, using numerical simulations. Based on their results, effective strategies are implemented by using a hand-arm system.

  • PDF

Autonomous Tracking of Micro-Sized Flying Insects Using UAV: A Preliminary Results

  • Ju, Chanyoung;Son, Hyoung Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.125-137
    • /
    • 2020
  • Tracking micro-sized insects is one of the challenges of protecting ecosystems and biodiversity. In this study, we propose an approach for the autonomous tracking of micro-sized flying insects, and develop an unmanned aerial vehicle (UAV)-based robotic system. The Kalman filter is applied to the received signal strength emitted from radio telemetry to estimate the position while reducing the measurement error and noise. The autonomous tracking strategy is a method in which the UAV rotates at one point to measure the signal strength and control its position in the strongest direction of the signal. We also design a system architecture comprising a tracking sensor system and a UAV system for micro-sized insects. The estimation and autonomous tracking of the target position by the proposed system are verified and evaluated through dynamic simulation. Therefore, in this study, we propose and validate a UAV-based tracking system for micro-sized flying insects, which has not been proposed in studies conducted thus far.

Development of robotic hands of signbot, advanced Malaysian sign-language performing robot

  • Al-Khulaidi, Rami Ali;Akmeliawati, Rini;Azlan, Norsinnira Zainul;Bakr, Nuril Hana Abu;Fauzi, Norfatehah M.
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.183-199
    • /
    • 2018
  • This paper presents the development of a 3D printed humanoid robotic hands of SignBot, which can perform Malaysian Sign Language (MSL). The study is considered as the first attempt to ease the means of communication between the general community and the hearing-impaired individuals in Malaysia. The signed motions performed by the developed robot in this work can be done by two hands. The designed system, unlike previously conducted work, includes a speech recognition system that can feasibly integrate with the controlling platform of the robot. Furthermore, the design of the system takes into account the grammar of the MSL which differs from that of Malay spoken language. This reduces the redundancy and makes the design more efficient and effective. The robot hands are built with detailed finger joints. Micro servo motors, controlled by Arduino Mega, are also loaded to actuate the relevant joints of selected alphabetical and numerical signs as well as phrases for emergency contexts from MSL. A database for the selected signs is developed wherein the sequential movements of the servo motor arrays are stored. The results showed that the system performed well as the selected signs can be understood by hearing-impaired individuals.

Force Control of Micro Robotic Finger Using Fuzzy Controller (퍼지제어를 이용한 마이크로 로보트 핑거의 힘제어)

  • 류재춘;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper, a theoretical study is presented for the force control of a miniature robotic manipulator which is driven by a pair of piezo-electric bimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilevers with a force sensor at the tip and the finger is a solid beam. The robotic finger is used to hold the objects with different stiffness such as an iron block and a living insect and a moving objcet. So it is very important to develop an adequate controller for the holding operation of the finger. The main problems in force controlling are overdamping, overshoot and unknown environment(such as the stiffness of object and unknown plant parameters). So, the main target is propose the new fuzzy compensation for unknown environment and incease the system performance. The fuzzy compensation is implemented by using PI-type fuzzy approach to identified unknown environment. And the result of proposed controller was compared with the conventaional PID and optimal controller.

  • PDF