DOI QR코드

DOI QR Code

날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles

  • Yoon, Sang-Hoon (Department of Aerospace Engineering, Seoul National University) ;
  • Cho, Haeseong (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Shin, Sang-Joon (Department of Aerospace Engineering, Seoul National University) ;
  • Huh, Seokhaeng (Unmanned/Intelligent Robotic System R&D, LIG Nex1) ;
  • Koo, Jeehoon (Unmanned/Intelligent Robotic System R&D, LIG Nex1) ;
  • Ryu, Jaekwan (Unmanned/Intelligent Robotic System R&D, LIG Nex1) ;
  • Kim, Chongam (Department of Aerospace Engineering, Seoul National University)
  • 투고 : 2021.01.21
  • 심사 : 2021.02.16
  • 발행 : 2021.03.01

초록

본 연구의 날갯짓 초소형 비행체는 실제 생명체의 날개를 모방하여, 매우 유연한 재질의 캠버날개를 활용한다. 캠버 날개는 생명체와 유사하게 앞전, 시맥, 박막과 같이 특성이 서로 다른 세가지 재질로 구성되어 있고 다양한 방식으로 구속되어 있다. 날개의 유연성을 활용한 수동 회전(passive rotation) 방식은 앞전과 시맥의 재질이 날갯짓 궤적에 매우 큰 영향을 미치는 요소이기 때문에 적절한 유연성을 갖는 재질의 선정이 필수적이다. 이러한 날개의 재질들과 복잡한 형상을 사실적으로 모델링하여 정밀하게 해석할 수 있는 유체-구조 연성해석 프로그램을 개발하고, 날개의 앞전과 시맥의 탄성 계수의 변화에 따른 공력탄성학 효과를 정밀하게 분석하였다. 결과적으로 재료의 탄성 계수 변화만으로도 날개의 비틀림각 궤적을 적절히 발생시킴으로써 날갯짓 비행체의 추력 및 효율을 크게 증가시킬 수 있음을 보였다.

The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

키워드

참고문헌

  1. Sane, S. P., "The aerodynamics of insect flight," Journal of Experimental Biology, Vol. 206, 2003, pp. 4191-4208. https://doi.org/10.1242/jeb.00663
  2. Shyy, W., Berg, M. and Ljungqvist, D., Flapping and flexible wings for biological and micro air vehicles, Progress in Aerospace Sciences, Vol. 24, No. 5, 1999, pp. 455-505.
  3. Ellington, C. P., Berg, C. V. D., Willmott, A. P. and Thomas, A. L. R., "Leading-edge vortices in insect flight," Nature, Vol. 384, 1996, pp. 626-630. https://doi.org/10.1038/384626a0
  4. Dickinson, M. H., "Wing Rotation and the Aerodynamic Basis of Insect Flight," Science, Vol. 284, 1999, pp. 1954-1960. https://doi.org/10.1126/science.284.5422.1954
  5. Lee, J.-S., Kim, J.-H. and Kim, C., "Numerical Study on the Unsteady-Force-Generation Mechanism of Insect Flapping Motion," AIAA Journal, Vol. 46, 2008, pp. 1835-1848. https://doi.org/10.2514/1.35646
  6. Kim, J.-H. and Kim, C., "Computational Investigation of Three-Dimensional Unsteady Flow-field Characteristics Around Insects' Flapping Flight," AIAA Journal, Vol. 49, 2011, pp. 953-968. https://doi.org/10.2514/1.J050485
  7. Lee, K.-B., Kim, J.-H. and Kim, C., "Aerodynamic Effects of Structural Flexibility in TwoDimensional Insect Flapping Flight," Journal of Aircraft, Vol. 48, 2011, pp. 894-909. https://doi.org/10.2514/1.C031115
  8. Lee, J. and Kim, C., "Development of a Mechanism for Flapping Wing Micro Aerial Vehicle," 17th International Conference on Control, Automation and Systems, Korea, 2017, pp. 21-22.
  9. Adhikari, D. R., An Experimental Optimization of Flapping Wing Geometry in the Hover, Master Dissertation, Department of Mechanical and Aerospace Engineering, Seoul National University, 2018.
  10. Cho, S. G., Lee, J. H. and Kim, C. A., "Velocity Profile Optimization of Flapping Wing Micro Air Vehicle," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 11, November, 2020, pp. 837-847. https://doi.org/10.5139/JKSAS.2020.48.11.837
  11. Phan, H. V., Truong, Q. T. and Park, H. C., "An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight," Bioinspiration and Biomimetics, Vol. 12, 036009, 2017. https://doi.org/10.1088/1748-3190/aa65e6
  12. Jeong, H., Two-dimensional Fluid-Structure Interaction Analysis of Flapping Micro Aerial Vehicles, Master Dissertation, Department of Mechanical and Aerospace Engineering, Seoul National University, 2016.
  13. Kang, C. K., Aono, H., Cesnik, C. E. S. and Shyy, W., "Effects of flexibility on the Aerodynamic performance of flapping wings," Journal of Fluid Mechanics, Vol. 689, 2011, pp. 32-74. https://doi.org/10.1017/jfm.2011.428
  14. Cho, H., Kim, H. and Shin, S. J., "Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements," Computer Methods in Applied Mechanics and Engineering, Vol. 328, 2018, pp. 301-320. https://doi.org/10.1016/j.cma.2017.08.037
  15. Yoon, S. H., Cho, H. S., Lee, J. H., Kim, C. A. and Shin, S. J., "Effects of Camber Angle on Aerodynamic Performance of Flapping-Wing Micro Air Vehicle," Journal of Fluids and Structures, Vol. 97, 103101, 2020. https://doi.org/10.1016/j.jfluidstructs.2020.103101
  16. Ahn, H. T. and Kallinderis, Y., "Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes," Journal of Computational Physics, Vol. 219, 2006, pp. 671-696. https://doi.org/10.1016/j.jcp.2006.04.011
  17. Mavriplis, D. J. and Yang, Z., "Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes," Journal of Computational Physics, Vol. 213, 2006, pp. 557-573. https://doi.org/10.1016/j.jcp.2005.08.018
  18. Chorin, A. J., "A Numerical Method for Solving Incompressible Viscous Flow Problems," Journal of Computational Physics, Vol. 2, 1967, pp. 12-26. https://doi.org/10.1016/0021-9991(67)90037-X
  19. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of Computational Physics, Vol. 43, 1981, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  20. Van Leer, B., "Towards the Ultimate Conservative Difference Scheme. V. A SecondOrder Sequel to Godunov's Method," Journal of Computational Physics, Vol. 32, 1979, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  21. Alonso, J. J. and Jameson, A., "FuIIy-Impicit Time-Marching Aeroelastic Solutions," 32nd Aerospace Sciences Meeting and Exhibit, Aeroelastic Solutions, AIAA-94-0056, 1994.
  22. Yoon, S. and Kwak, D., "Three-Dimensional Incompressible Navier-Stokes Solver Using LowerUpper Symmetric-Gauss-Seidel Algorithm," AIAA Journal, Vol. 29, 1991, pp. 874-875. https://doi.org/10.2514/3.10671
  23. Rankin, C. C. and Brogan, A., "An Elementindependent Co-rotational Procedure for the Treatment of Large Rotations," ASME Journal of Pressure Vessel Technology, Vol. 108, No. 2, 1989, pp. 165-175. https://doi.org/10.1115/1.3264765
  24. Felippa, C. A. and Haugen, B., "A unified formulation of small-strain Co-rotational finite elements: I. Theory," Computer Methods in Applied Mechanics and Engineering, Vol. 194, 2005, pp. 2285-2335. https://doi.org/10.1016/j.cma.2004.07.035
  25. Battini, J. M. and Pacoste, C., "Co-rotational beam elements with warping effects in instability problems," Computer Methods in Applied Mechanics and Engineering, Vol. 191, 2002, pp. 1755-1789. https://doi.org/10.1016/S0045-7825(01)00352-8
  26. Felippa, C. A., "A study of optimal membrane triangles with drilling freedoms," Computer Methods in Applied Mechanics and Engineering, Vol. 192, 2003, pp. 2125-2168. https://doi.org/10.1016/S0045-7825(03)00253-6
  27. Arnold, M. and Bruls, O., "Convergence of the generalized-α scheme for constrained mechanical systems," Multibody System Dynamics, Vol. 18, 2007, pp. 185-202. https://doi.org/10.1007/s11044-007-9084-0
  28. Cho, H., Gong, D., Lee, N., Shin, S. J. and Lee, S., "Combined co-rotational beam/shell elements for fluid-structure interaction analysis of insectlike flapping wing," Nonlinear Dynamics, Vol. 97, No. 1, 2019, pp. 203-224. https://doi.org/10.1007/s11071-019-04966-y
  29. Cho, H., Kim, H. and Shin, S. J., "Geometrically nonlinear dynamic formulation for three-dimensional co-rotational solid elements," Computer Methods in Applied Mechanics and Engineering, Vol. 328, 2018, pp. 301-320. https://doi.org/10.1016/j.cma.2017.08.037
  30. Cho, H., Kwak, J. Y., Shin, S. J., Lee, N. and Lee, S., "Flapping-Wing Fluid-Structural Interaction Analysis Using Corotational Triangular Planar Structural Element," AIAA Journal, Vol. 54, No. 8, 2016, pp. 2265-2276. https://doi.org/10.2514/1.J054567
  31. Alonso, J. J. and Jameson, A., "FuIIyImpicit Time-Marching Aeroelastic Solutions," 32nd Aerospace Sciences Meeting and Exhibit, Aeroelastic Solutions, AIAA-94-0056, 1994.
  32. Byun, C. and Guruswamyt, G. P., "A Parallel, Multi-block, Moving Grid Method for Aeroelastic Applications on Full Aircraft," AIAA paper, AIAA-94-4782, 1998.
  33. Beckert, A. and Wendland, H., "Multivariate interpolation for fluid-structure-interaction problems using radial basis functions," Aerospace Science and Technology, Vol. 5, 2001, pp. 125-134. https://doi.org/10.1016/S1270-9638(00)01087-7
  34. Tay, W. B., Van Oudheusden, B. W. and Bijl, H., "Numerical simulation of a flapping four-wing micro-aerial vehicle," Journal of Fluids and Structures, Vol. 55, 2015, pp. 237-261. https://doi.org/10.1016/j.jfluidstructs.2015.03.003
  35. "Young's Modulus," Online, Available: http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/stiffness-density/NS6Chart.html