• Title/Summary/Keyword: Micro behavior

Search Result 1,053, Processing Time 0.032 seconds

A Study on Fractal Character of Surface Micro-crack under In-plane Bending (평면굽힘하중을 받는 표면미소균열의 프랙탈 특성에 관한 연구)

  • 박승용;주원식;장득열;조석수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.521-527
    • /
    • 1997
  • Irregular shapes and growth behavior of surface micro-crack showed very complex and nonlinear propeties and many investigators have performed theoretical analysesand experiments on them to characterize fatigue strength. They had difficulties in estimating fatigue life due to random distribution, growth and coalescence of surface micro-cracks. The straightness of crack growth along intergranular and transgranular was prevented from irregular microstructure and precipitates. Euclid geometry can't quantify shape of surface micro-crack but ftractal geometry can. Therefore, it is suggested that average fractal dimension of surface micro-cracks is able to estimate fatigue life but fractal dimension of maximum surface micro-crack is not in Al 2024-T3 alloy.

  • PDF

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M.;Shojaee, T.;Mohammadi, B.;Kolahchi, R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.405-417
    • /
    • 2019
  • This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

A Study on the Creep Characteristics of Solder of 63 Sn-37Pb (63Sn-37Pb 땜납의 크리프 특성에 관한 연구)

  • 이억섭;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

An Experimental Study on the Fatigue Behavior and Stress Interaction of Arbitrarily Located Defects (I) (불규칙하게 분포된 미소결함 사이의 응력간섭 및 피로균열 거동에 대한 실험적 연구 (1))

  • Song, Sam-Hong;Bae, Jun-Su;Choe, Byeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1288-1296
    • /
    • 2000
  • In this study, fatigue crack behavior between arbitrarily located defects was investigated by experiment. Especially, stress interaction between micro hole defects and fatigue cracking, and fatigue crack initiation life following the variation of location of micro hole defects were considered. In addition, crack initiation position by micro hole stress interaction and the relationship between stress concentration factor and fatigue initiation life are studied in detail.

Micro-scale Vibration Phenomena in a Linear Motion Guide Having Rolling Elements (구름 요소를 사용하는 LM 가이드에서의 마이크로스케일 진동현상)

  • 이용섭;김윤영;최재석;유정훈;이동진;이석원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.332-336
    • /
    • 2004
  • To position precision machines accurately, linear motion (LM) guides having rolling elements can be used. For ultra-accurate positioning control of the precision machines, the understanding of the dynamic behavior of the LM guide at the macro and/or micro scales is most critical, but the research on this subject is rare. The objective of the present research is to observe the vibration phenomena of the LM guide. Bails are used as the rolling elements in this work. Several experiments show the nonlinear characteristics of the LM guide such as hysteresis behavior and force-dependent natural frequencies phenomena.

  • PDF

Micro-scale Vibration Phenomena in a Linear Motion Guide Having Rolling Elements (구름 요소를 사용하는 LM 가이드에서의 마이크로스케일 진동현상#)

  • 이용섭;최재석;유정훈;이동진;이석원;김윤영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1029-1034
    • /
    • 2004
  • Linear motion ( LM) guides having rolling elements have been used to position precision machines accurately. For ultra-accurate Positioning control of Precision machines, the understanding of the dynamic behavior of the LM guide at the macro and/or micro scales is most critical, but the research on this subject is rare. The objective of the present research is to investigate the vibration phenomena of the LM guide where balls are used as the rolling elements. Several experiments show the nonlinear characteristics of the LM guide such as hysteresis behavior and force-dependent natural frequencies phenomena.

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads (일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화)

  • Lee, Eun Sun;Goh, Tae Sik;Lee, Chi-Seung
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

A numerical study on micro leakage behaviors at cavity edge during photo reaction injection molding (광반응사출성형 시 캐비티 엣지에서 발생하는 미세누출현상에 관한 해석적 연구)

  • La, Moon-woo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.8-13
    • /
    • 2016
  • Despite technological advance, there have been several troubles in photo reaction injection molding (photo RIM) to produce ultra thin light guide panels (LGPs). In this study, micro leakage problem at cavity edge during photo RIM was investigated numerically. In order to obtain optimal processing conditions, we regulated inlet pressure of injected resin at the cavity edge and figured out micro leakage behaviors. At low inlet pressure (less than 100 Pa), though the micro leakage problem was not occurred, another problem, short shot due to not enough driving force, was appeared More than 1,000 Pa of the inlet pressure, injected resin was rapidly leaked through the micro gap at the cavity edge. Finally, we obtained optimal inlet pressure around 600 ~ 1,000 Pa. At this region, injected resin fully filled the cavity without micro leakage behavior. Based on the present study, further comparative investigations with experimental photo RIM should be performed to find optimal processing conditions for produce ultra thin LGPs.