1 |
Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manuf., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
DOI
|
2 |
Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
DOI
|
3 |
Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
DOI
|
4 |
Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247
|
5 |
Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotubereinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
DOI
|
6 |
Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., Int. J., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361
DOI
|
7 |
Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
DOI
|
8 |
Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
DOI
|
9 |
Barati, M.R. and Zenkour, A.M. (2018b), "Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions", Mech. Adv. Mater. Struct., 26(12), 1081-1088. https://doi.org/10.1080/15376494.2018.1430280
DOI
|
10 |
Barati, M.R. and Zenkour, A.M. (2018c), "Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins and nanopores surface effects", Compos. Struct., 184, 497-505. https://doi.org/10.1016/j.compstruct.2017.10.019
DOI
|
11 |
Chaudhary, S., Sahu, S.A. and Singhal, A. (2017), "Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum", Acta Mechanica, 228(2), 495-529. https://doi.org/10.1007/s00707-016-1708-0
DOI
|
12 |
Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
DOI
|
13 |
Chaudhary, S., Sahu, S.A., Singhal, A. and Nirwal, S. (2019a), "Interfacial imperfection study in presstressed rotating multiferroic cylindrical tube with wave vibration analytical approach", Mater. Res. Express, 6(10), 105704. https://doi.org/10.1088/2053-1591/ab3880
DOI
|
14 |
Chaudhary, S., Sahu, S.A., Dewangan, N. and Singhal, A. (2019b), "Stresses produced due to moving load in a prestressed piezoelectric substrate", Mech. Adv. Mater. Struct., 26(12), 1028-1041. https://doi.org/10.1080/15376494.2018.1430265
DOI
|
15 |
Chaudhary, S., Singhal, A. and Sahu, S.A. (2019c), "Influence of the Imperfect Interface on Love-Type Mechanical Wave in a FGPM Layer", J. Solid Mech., 11(1), 201-209. https://doi.org/10.22034/JSM.2019.664229
|
16 |
Lin, F., Yang, C., Zeng, Q.H. and Xiang, Y. (2018), "Morphological and mechanical properties of graphenereinforced PMMA nanocomposites using a multiscale analysis", Computat. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
DOI
|
17 |
Mohammadimehr, M., Monajemi, A.A. and Afshari, H. (2017), "Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams", Microsyst. Technol., 1-15. https://doi.org/10.1007/s00542-017-3682-4
|
18 |
Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Systm. Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
|
19 |
Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
|
20 |
Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425
DOI
|
21 |
Nieto, A., Bisht, A., Lahiri, D., Zhang, C. and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: a review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481
DOI
|
22 |
Nirwal, S., Sahu, S.A., Singhal, A. and Baroi, J. (2019), "Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect", Compos. Part B: Eng., 167, 434-447. https://doi.org/10.1016/j.compositesb.2019.03.014
DOI
|
23 |
Ahankari, S.S. and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601
DOI
|
24 |
Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst., Int. J., 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573
|
25 |
Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
|
26 |
Allahkarami, F. and Nikkhah-Bahrami, M. (2018), "The effects of agglomerated CNTs as reinforcement on the size-dependent vibration of embedded curved microbeams based on modified couple stress theory", Mech. Adv. Mater. Struct., 25(12), 995-1008. https://doi.org/10.1080/15376494.2017.1323144
DOI
|
27 |
Aragh, B.S. (2017), "Mathematical modelling of the stability of carbon nanotube-reinforced panels", Steel Compos. Struct., Int. J., 24(6), 727-740. https://doi.org/10.12989/scs.2017.24.6.727
|
28 |
Barati, M.R. and Zenkour, A.M. (2018a), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
DOI
|
29 |
Ebrahimi, F. and Barati, M.R. (2017), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., Int. J., 6(2), 93-128. https://doi.org/10.12989/amr.2017.6.2.093
|
30 |
Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., Int. J., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465
|
31 |
Sahmani, S and Aghdam, M.M. (2017), "Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams", Compos. Struct., 179, 77-88. https://doi.org/10.1016/j.compstruct.2017.07.064
DOI
|
32 |
Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
DOI
|
33 |
Reddy, R.M.R., Karunasena, W. and Lokuge, W. (2018), "Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions", Aerosp. Sci. Technol., 78, 147-156. https://doi.org/10.1016/j.ast.2018.04.019
DOI
|
34 |
Rostami, R., Mohammadimehr, M., Ghannad, M. and Jalali, A. (2018), "Forced vibration analysis of nanocomposite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties", Theor. Appl. Mech. Lett., 8(2), 97-108. https://doi.org/10.1016/j.taml.2018.02.005
DOI
|
35 |
Sahu, S.A., Singhal, A. and Chaudhary, S. (2017), "Influence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces", J. Solid Mech., 555-567.
|
36 |
Sahu, S.A., Singhal, A. and Chaudhary, S. (2018), "Surface wave propagation in functionally graded piezoelectric material: an analytical solution", J. Intel. Mater. Syst. Struct., 29(3), 423-437. https://doi.org/10.1177/1045389X17708047
DOI
|
37 |
Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279
|
38 |
Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
DOI
|
39 |
Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069
|
40 |
Ebrahimi, F. and Habibi, S. (2018), "Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 25(5), 425-438. https://doi.org/10.1080/15376494.2017.1285453
DOI
|
41 |
Emam, S.A. (2009), "A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams", Compos. Struct., 90(2), 247-253. https://doi.org/10.1016/j.compstruct.2009.03.020
DOI
|
42 |
Singhal, A., Sahu, S.A. and Chaudhary, S. (2018a), "Approximation of surface wave frequency in piezocomposite structure", Compos. Part B: Eng., 144, 19-28. https://doi.org/10.1016/j.compositesb.2018.01.017
DOI
|
43 |
Semmah, A., Beg, O.A., Mahmoud, S.R., Heireche, H. and Tounsi, A. (2014), "Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model", Adv. Mater. Res., Int. J., 3(2), 77-89. https://doi.org/10.12989/amr.2014.3.2.077
|
44 |
Shenas, A.G., Ziaee, S. and Malekzadeh, P. (2018), "A unified higher-order beam theory for free vibration and buckling of fgcnt-reinforced microbeams embedded in elastic medium based on unifying stress-strain gradient framework", Iran. J. Sci. Technol., Transact. Mech. Eng., 43(1), 469-492. https://doi.org/10.1007/s40997-018-0171-z
|
45 |
Singh, M.K., Sahu, S.A., Singhal, A. and Chaudhary, S. (2018), "Approximation of surface wave velocity in smart composite structure using Wentzel-Kramers-Brillouin method", J. Intel. Mater. Syst. Struct., 29(18), 3582-3597. https://doi.org/10.1177/1045389X18786464
DOI
|
46 |
Singhal, A., Sahu, S.A. and Chaudhary, S. (2018b), "Liouville-Green approximation: An analytical approach to study the elastic waves vibrations in composite structure of piezo material", Compos. Struct., 184, 714-727. https://doi.org/10.1016/j.compstruct.2017.10.031
DOI
|
47 |
Singhal, A., Sahu, S., Chaudhary, S. and Baroi, J. (2019), "Initial and couple stress influence on the surface waves Transmission in material layers with imperfect interface", Mater. Res. Express, 6(10), 105713. https://doi.org/10.1088/2053-1591/ab40e2
DOI
|
48 |
Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. and Lu, H. (2011), "Morphology, mechanical and thermal properties of graphene-reinforced poly (butylene succinate) nanocomposites", Compos. Sci. Technol., 72(1), 1-6. https://doi.org/10.1016/j.compscitech.2011.05.007
DOI
|
49 |
Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
DOI
|
50 |
Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Thin-Wall. Struct., 108, 225-233. https://doi.org/10.1016/j.tws.2016.08.024
DOI
|
51 |
Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
|
52 |
Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044
DOI
|