Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.12.688

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads  

Lee, Eun Sun (Biomedical Research Institute, Pusan National University Hospital)
Goh, Tae Sik (Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital)
Lee, Chi-Seung (Biomedical Research Institute, Pusan National University Hospital)
Publication Information
Korean Journal of Materials Research / v.27, no.12, 2017 , pp. 688-694 More about this Journal
Abstract
Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.
Keywords
porous material; polyurethane foam; compressive stress-strain behavior; void volume fraction; micro computed tomography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Bram, C. Stiller, H. P. Buchkremer, D. Stover and H. Baur, Adv. Eng. Mater., 2, 196 (2000).   DOI
2 G. Davies and S. Zhen, J. Mater. Sci., 18, 1899 (1983).   DOI
3 E. Ryshkewitch, J. Am. Ceram. Soc., 36, 65 (1953).   DOI
4 M. Scheffler and P. Colombo, Cellular ceramics: structure, manufacturing, properties and applications, John Wiley & Sons, p. 33, M. S. a. P. Colombo, John Wiley & Sons, (2006).
5 N. R. Cameron, Polymer, 46, 1439 (2005).   DOI
6 J. Lotters, W. Olthuis, P. Veltink and P. Bergveld, J. Micromech. Microeng., 7, 145 (1997).   DOI
7 J. A. Szivek, J. D. Thompson and J. B. Benjamin, J. Appl. Biomater. Biomech., 6, 125 (1995).   DOI
8 S. Goods, C. Neuschwanger, C. Henderson and D. Skala, J. Appl. Polymer. Sci., 68, 1045 (1998).   DOI
9 R. Allen, N. Baldini, P. Donofrio, E. Gutman, E. Keefe and J. Kramer, Annual book of ASTM standards, medical devices and services. West Conshohocken, The American Society for Testing and Materials, (1998).
10 J. R. Chapman, R. Harrington, K. Lee, P. Anderson, A. F. Tencer and D. Kowalski, J. Biomech. Eng., 118, 391 (1996).   DOI
11 M. Ashby, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 364, 15 (2006).   DOI
12 S. Meille, M. Lombardi, J. Chevalier and L. Montanaro, J. Eur. Ceram. Soc., 32, 3959 (2012).   DOI
13 B. Johansson and G. Alderborn, Eur. J. Pharm. Biopharm., 52, 347 (2001).   DOI
14 O. Umezawa, Metal, Ceramic and Polymeric Composites for Various Uses, from https://www.intechopen.com/books/metal-ceramic-and-polymeric-composites-forvarious-uses/thermo-mechanical-treatment-of-glassballoon-dispersed-metal-matrix-composite
15 Q. Hou, D. W. Grijpma and J. Feijen, Biomaterials, 24, 1937 (2003).   DOI
16 D. Poulikakos, J. Fluid. Eng., 124, 263 (2002).   DOI
17 A. Markaki and T. Clyne, Acta Mater., 49, 1677 (2001).   DOI
18 J. Rice, S. Cowin and J. Bowman, J. Biomech., 21, 155 (1988).   DOI
19 H. Kolsky, Proc. Phys. Soc. B, 62, 676 (1949).   DOI
20 N. Sarier and E. Onder, Thermochim. Acta, 510, 113 (2010).   DOI
21 Sawbones Worldwide, from http://www.sawbones.com/products/bio/composite.aspx.
22 D. ASTM, American Society for Testing and Materials, New York, (2016).
23 S. Goods, C. Neuschwanger and L. Whinnery, MRS Online Proceedings Library Archive, 521 (1998).
24 F. Yi, Z. Zhu, F. Zu, S. Hu and P. Yi, Mater. Char., 47, 417 (2001).   DOI
25 W. Hayes and D. Carter, J. Biomed. Mater. Res., 10, 537 (1976).   DOI
26 G. Subhash, Q. Liu and X.-L. Gao, Int. J. Impact. Eng., 32, 1113 (2006).   DOI
27 L. J. Gibson, M. F. Ashby and B. A. Harley, Cellular Materials in Nature and Medicine, Cambridge University Press, p. 44, Cambridge University Press, (2010).
28 M. Shaw and T. Sata, Int. J. Mech. Sci., 8, 469 (1966).   DOI
29 S. Callcut and J. Knowles, J. Mater. Sci. Mater. Med., 13, 485 (2002).