• 제목/요약/키워드: Micro Thermal Actuator

검색결과 26건 처리시간 0.025초

The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures

  • 정귀상;홍석우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.197-201
    • /
    • 2002
  • This paper presents optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SOI and trench structures. The micro-heaters are based on a thermal measurement principle and contains thermal isolation regions of 10 ${\mu}m$-thick Si membranes consisting of oxide-filled trenches in the SOI membrane rim. The micro-heaters were fabricated with Pt-RTD on the same substrate via MgO buff layer between Pt thin-film and $SiO_2$ layer. The thermal characteristics of micro-heater with trench-free SOI membrane structure was $280^{\circ}C$ at input power 0.9 W; in the presence of 10 trenches, it was $580^{\circ}C$ due to reduction of the external thermal loss. Therefore, a micro-heater with trenches in SOI membrane rim structure provides a powerful and versatile alternative technology for enhancing the performance of micro-thermal sensors and actuators.

  • PDF

열풍동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성 분석 (Fabrication of thermally driven polysilicon micro actuator and its characterization)

  • 이종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.146-150
    • /
    • 1996
  • A thermal micro actualtor has been fabricated using surface micromachining techniques. It consists of doped ploysilicon as a moving part and TEOS(Tetra Ethyl Ortho Silicate) as a sacrificial layer. The polysilicon was annealed for the reduction of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE(vapor phase etching)process was also used as an effective release method for the elimination of sacrificaial layer. With noliquid involved during any of the steps for relasing, unlike other reported relase techniques, the HF VPE pocess has produced polysilicon microstructures with virtually no process-induced stiction problem. The actuation is incured by the thermal expasion due to current flow in active polysilicon cantilever, which motion is amplified bylever mechanism. The thickness of pllysilicon is 2 .mu. m and the length of active and passive polysilicon cantilever are 500 .mu. m, respectively. The moving distance of polysilicon actuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10 V and 50Hz square wave. These micro actuator technology can be utilized for the fabrication of MEMS (microlectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

마이크로펌프를 이용한 PCR Chip의 구동 (Operation of PCR chip by micropump)

  • 최종필;반준호;장인배;김헌영;김병희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.463-467
    • /
    • 2004
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated b micro-heater under pulse heating. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, he middle plate, the upper plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The middle plate includes the chamber and diaphragm d the upper plate is the micro-heater. The Micropump is fabricated by bonding process of the three layer. This paper resented the possibility of the PCR chip operation by the fabricated micropump.

  • PDF

흘로그램 간섭계를 이용한 광픽업 베이스의 미소 열변형 측정 (Measurement of Micro Thermal Deformation of Optical Pick-up Base Using Holographic Interferometry)

  • 서영민;강신일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2002
  • In optical pick-up, optical components such as objective lens, collimator, mirror, laser diode and photo diode are mounted on the pick-up base. These components must keep their original position during operation for proper transmittance of information from laser diode to optical disk and back to photo diode. However, micro thermal deformation of pick-up base which is induced by thermal environment during operation can deteriorate the performance of optical pick-up. Therefore, it is important to measure and analyze the thermal deformation behavior of pick-up base under thermal environment. In the present study, a measurement system using holographic interferometry was designed to measure micro thermal deformation of pick up base. The measurement system was verified by using the deformation of cantilever with prescribed motion actuated by PZT with 1 nm resolution. Interferometric measurement was compared quantitatively with that induced by PZT actuator. Finally, micro thermal deformation of pick-up base under actual thermal environment was measured using the present holographic interferometry and the results were analysed.

  • PDF

열 구동 엑츄에이터와 SU-8을 이용한 마이크로 그리퍼 설계 및 제조 (Design and fabrication of microgripper using thermal actuator and SU-8)

  • 정승호;박준식;이민호;박상일;이인규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1613-1616
    • /
    • 2007
  • A microgripper using thermal actuator and SU-8 polymer was designed and fabricated to manipulate cells and microparts. A chip size of a microgripper was 3 mm ${\times}$ 5 mm. The thermally actuated microgripper consisted of two couples of hot and cold arm actuators. The high thermal expansion coefficient, 52 $ppm/^{\circ}C$, of SU-8 compared to silicon and metals, allows the actuation of the microgripper. Thickness and width of SU-8 as an end-effector were 26 ${\mu}m$ and 80 ${\mu}m$, respectively. Initial gap between left jaw and right jaw was 120 ${\mu}m$. The ANSYS program as FEM tool was introduced to analyze the thermal distribution and displacement induced by thermal actuators. $XeF_2$ gas was used for isotropic silicon dry etching process to release SU-8 end-effector. Mechanical displacements of the fabricated microgripper were measured by optical microscopy in the range of input voltage from 0 V to 2.5 V. The maximum displacement between two jaws of a microgripper Type OG 1_1 was 22.4 ${\mu}m$ at 2.5 V.

  • PDF

3D Lithography using X-ray Exposure Devices Integrated with Electrostatic and Electrothermal Actuators

  • Lee, Kwang-Cheol;Lee, Seung S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.259-267
    • /
    • 2002
  • We present a novel 3D fabrication method with single X-ray process utilizing an X-ray mask in which a micro-actuator is integrated. An X-ray absorber is electroplated on the shuttle mass driven by the integrated micro-actuator during deep X-ray exposures. 3D microstructures are revealed by development kinetics and modulated in-depth dose distribution in resist, usually PMMA. Fabrication of X-ray masks with integrated electrothermal xy-stage and electrostatic actuator is presented along with discussions on PMMA development characteristics. Both devices use $20-\mu\textrm{m}$-thick overhanging single crystal Si as a structural material and fabricated using deep reactive ion etching of silicon-on-insulator wafer, phosphorous diffusion, gold electroplating, and bulk micromachining process. In electrostatic devices, $10-\mu\textrm{m}-thick$ gold absorber on $1mm{\times}1mm$ Si shuttle mass is supported by $10-\mu\textrm{m}-wide$, 1-mm-long suspension beams and oscillated by comb electrodes during X-ray exposures. In electrothermal devices, gold absorber on 1.42 mm diameter shuttle mass is oscillated in x and y directions sequentially by thermal expansion caused by joule heating of the corresponding bent beam actuators. The fundamental frequency and amplitude of the electrostatic devices are around 3.6 kHz and $20\mu\textrm{m}$, respectively, for a dc bias of 100 V and an ac bias of 20 VP-P (peak-peak). Displacements in x and y directions of the electrothermal devices are both around $20{\;}\mu\textrm{m}$at 742 mW input power. S-shaped and conical shaped PMMA microstructures are demonstrated through X-ray experiments with the fabricated devices.

Fabrication and Characterization of Thermally Actuated Bimorph Probe for Living Cell Measurements with Experimental and Numerical Analysis

  • Cho Young-Hak;Kang Beom-Joon;Hong Seok-Kwan;Kang Jeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.297-309
    • /
    • 2006
  • This paper deals with a novel structure for single-cell characterization which makes use of bimorph micro thermal actuators combined with electrical sensor device and integrated microfluidic channel. The goal for this device is to capture and characterize individual biocell. Quantitative and qualitative characteristics of bimorph thermal actuator were analyzed with finite element analysis methods. Furthermore, optimization for the dimension of cantilevers and integrated parallel probe systems with microfluidic channels is able to be realized through the virtual simulation for actuation and the practical fabrication of prototype of probes. The experimental value of probe deflection was in accordance with the simulated one.

A study on thermo-mechanical behavior of MCD through bulge test analysis

  • Altabey, Wael A.
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.107-119
    • /
    • 2017
  • The Micro circular diaphragm (MCD) is the mechanical actuator part used in the micro electro-mechanical sensors (MEMS) that combine electrical and mechanical components. These actuators are working under harsh mechanical and thermal conditions, so it is very important to study the mechanical and thermal behaviors of these actuators, in order to do with its function successfully. The objective of this paper is to determine the thermo-mechanical behavior of MCD by developing the traditional bulge test technique to achieve the aims of this work. The specimen is first pre-stressed to ensure that is no initial deflection before applied the loads on diaphragm and then clamped between two plates, a differential pressure (P) and temperature ($T_b$) is leading to a deformation of the MCD. Analytical formulation of developed bulge test technique for MCD thermo-mechanical characterization was established with taking in-to account effect of the residual strength from pre-stressed loading. These makes the plane-strain bulge test ideal for studying the mechanical and thermal behavior of diaphragm in both the elastic and plastic regimes. The differential specimen thickness due to bulge effect to describe the mechanical behavior, and the temperature effect on the MCD material properties to study the thermal behavior under deformation were discussed. A finite element model (FEM) can be extended to apply for investigating the reliability of the proposed bulge test of MCD and compare between the FEM results and another one from analytical calculus. The results show that, the good convergence between the finite element model and analytical model.

스윙 암 타입 초소형 광 픽업 시스템의 방열 설계 (Micro Thermal Design of Swing-Arm Type Small Form Factor Optical Pick-up System)

  • 이지나;김홍민;강신일;손진승;이명복
    • 정보저장시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.21-25
    • /
    • 2006
  • The new multimedia information environment requires smaller optical data storage systems. However, one of the difficulties encountered in designing small form factor(SFF) optical pick-up is to emit the heat which is generated from laser diode(LD). Heat generated at the LD can reduce the optical performance of the system and the lifetime of LD. Therefore, it is important to include the thermal design in the design stage of SFF optical pick-up system for high performance and the longer lifetime of LD, and furthermore, to analyze the thermal characteristics of LD in detail micro heat transfer analysis is necessary. In the present study, micro heat transfer analysis was performed using the finite element method for the $28{\times}11{\times}2mm^3$ super slim swing-arm type optical pick-up actuator for Blu-ray disk. Two different materials were used for a swing-arm; a double layer polycarbonate/steel structure and a single aluminum structure.

  • PDF

전기왜곡성 폴리우레탄 엑츄에이터의 특성 평가 (Characterization of Electrostrictive Polyurethane Films for Micro-Actuators)

  • 정은수;박한수;정해도;조남주;제우성
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.161-167
    • /
    • 2002
  • For the purpose of applying to micro-actuator, thermal properties and displacement of electrostrictive polyurethane(PU) elastomers have been measured. In order to understand an effect of PU component, crosslinking agent are controlled by 0.5 wt% and 1 wt%. DMPA and anther chain extenders were used. PU sample that chain extenders are DMPA is added NaOH for comprehension of effect of ionic groups. The deposited electrode sire on PU films is equal to acrylic holder size when the displacement was measured. Dynamic response according to frequency, displacement and recovery time according to PU thickness were measured. 1 wt% crosslinking agent contents PU samples have higher displacement and lower recovery time than 0.5 wt% crosslinking agent contents PU. If the PU thickness is increased, the actuating voltage for generating of same displacement is increased, too.