• 제목/요약/키워드: Micro Photo-Etching

검색결과 27건 처리시간 0.023초

Photo lithography을 이용한 플라즈마 에칭 가공특성에 관한 연구 (A study on processing characteristics of plasma etching using photo lithography)

  • 백승엽
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.47-51
    • /
    • 2018
  • As the IT industry rapidly progresses, the functions of electronic devices and display devices are integrated with high density, and the model is changed in a short period of time. To implement the integration technology, a uniform micro-pattern implementation technique to drive and control the product is required. The most important technology for the micro pattern generation is the exposure processing technology. Failure to implement the basic pattern in this process cannot satisfy the demands in the manufacturing field. In addition, the conventional exposure method of the mask method cannot cope with the small-scale production of various types of products, and it is not possible to implement a micro-pattern, so an alternative technology must be secured. In this study, the technology to implement the required micro-pattern in semiconductor processing is presented through the photolithography process and plasma etching.

미세 전해가공 기술 동향 (Review of Micro Electro-Chemical Machining)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제2권2호
    • /
    • pp.25-29
    • /
    • 2012
  • Micro machining technologies have been required to satisfy various conditions in a high-technology industry. Micro electrochemical process is one of the most precision machining methods. Micro electrochemical process has been divided into electrochemical etching through protective layer and electrochemical machining using ultrashort voltage pulses. Micro shaft can be fabricated by electrochemical etching. The various protective layers such as photo-resist, oxide layer and oxidized recast layer have been used to protect metal surface during electrochemical etching. Micro patterning on metal surface can be machined by electrochemical etching through protective layer. Micro hole, groove and structures can be easily machined by electrochemical machining using ultrashort voltage pulses. Recently, the groove with subnanometer was machined using AFM.

  • PDF

Etching-free 공정 적용 Micro filling 미세 패턴 구현 연구 (Study on fine pattern with Micro filling using Etching-free process)

  • 김완규;윤영우;이성의
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.72-73
    • /
    • 2012
  • Metal line을 형성하는 방법에는 그라비아 인쇄, 잉크젯 인쇄, photo 공정 후 박막 증착 공정 등을 많이 사용한다. 본 연구에서는 Micro-imprinting 공정과 DFR photo lithography 공정을 통해 음각의 미세한 pattern을 형성한 후 sputtering과 printing을 이용하여 pattern의 filling을 통해 metal line을 구현하는 것을 목표로 하였다. Pattern을 형성한 후 RIE 공정을 통해 기판 표면의 친수성 처리를 하고, SAM 공정을 통해 코팅 막의 소수성 처리를 하였다. Sputtering과 전면 프린팅 및 건조 후 strip 공정을 통해 metal line을 형성하고, 이에 대한 표면 특성과 전기적 특성을 분석하였다.

  • PDF

지르코니아 표면처리가 골유착에 미치는 영향 (Investigation of effect of zirconia on osseointegration by surface treatments)

  • 정진우;송영균
    • 구강회복응용과학지
    • /
    • 제37권1호
    • /
    • pp.23-30
    • /
    • 2021
  • 목적: 본연구의 목적은 다양한 산용액을 이용하여 지르코니아의 표면을 처리하여 표면의 양상과 골유착에 미치는 영향을 알아보는 것이다. 연구 재료 및 방법: 준비된 지르코니아 디스크에 다양한 산용액 및 광촉매 산부식을 이용하여 표면을 처리하였다. 각 시편을 SEM으로 관찰하고, 골유착을 관찰하기 위해 MC3T3E-1 세포를 이용하여 형광염색과 역전사 중합효소 연쇄반응을 통해 평가하였다. 결과: 처리한 방법에 따라 다양한 거칠기를 보였다. 불산처리군은 표면의 거칠기가 증가하였으나 약한 네트워크 구조를 가지고 있었다. 골유착능에서는 광촉매 산부식을 시행한 군에서 더 좋은 결과를 보였다(P < 0.05). 결론: 지르코니아를 광촉매 산부식방법으로 처리할 경우 다른 산처리방법에 비해 골유착능을 높이는데 효과적일 것으로 사료된다.

Silylation Photo resist 공정과 Enhanced-Inductively Coupled Plasma (E-ICP) (The Silylation Photo Resist Process and the Enhanced-Inductively Coupled Plasma (E-ICP))

  • 정재성;박세근;오범환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.922-925
    • /
    • 1999
  • The Silylation photo-resist etch process was tested by Enhanced-ICP dry etcher. The comparison of the two process results of micro pattern etching with 0.25${\mu}{\textrm}{m}$ CD by E-ICP and ICP reveals that E-ICP has better quality than ICP The etch rate and the microloading effect was improved in E-ICP Especially, the problem of the lateral etch was improved in E-ICP.

  • PDF

Thin Film Micromachining Using Femtosecond Laser Photo Patterning of Organic Self-assembled Monolayers

  • Chang Won-Seok;Choi Moo-Jin;Kim Jae-Gu;Cho Sung-Hak;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.13-17
    • /
    • 2006
  • Self-Assembled Monolayers (SAMs) formed by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecules and bio molecules. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAM structure formation.

유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 박막 미세 형상 가공 기술 (Micromachining Thin Film Using Femtosecond Laser Photo Patterning Of Organic Self-Assembled Monolayers.)

  • 최무진;장원석;김재구;조성학;황경현
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.160-166
    • /
    • 2004
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated fer applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecule and bio molecule. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAMs structure formation.

Microfluidic LOC 시스템 (Microfluidic LOC System)

  • 김현기;구홍모;이양두;이상렬;윤영수;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, we used only PR as etching mask, while it used usually Cr/AU as etching mask, and in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. we designed microchannel size width max 10um, min 5um depth max 10um, reservoir size max 100um, min 2mm. Fabrication of microfluidic devices in glass substrate by glass wet etching methods and glass to glass fusion bonding. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive($4k{\Omega}{\cdot}cm$) wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571\Omega$ to $393\Omega$.

  • PDF

355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작에 관한 연구 (A Study on Rapid Fabrication of Micro Lens Array using 355nm UV Laser Irradiation)

  • 제순규;박상후;최춘기;신보성
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.310-316
    • /
    • 2009
  • Micro lens array(MLA) is widely used in information technology(IT) industry fields for various applications such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method having the processes of micro etching, electroplating, micro machining and laser local heating. Laser thermal relaxation method is introduced in marking of microdots on the surface of densified glass. In this paper, we have proposed a new direct fabrication process using UV laser local thermal-expansion(UV-LLTE) and investigated the optimal processing conditions of MLA on the surface of negative photo-resist material. We have also studied the 3D shape of the micro lens obtained by UV laser irradiation and the optimal process conditions. And then, we made chrome mold by electroplating. After that, we made MLA using chrome mold by hot embossing processing. Finally, we have measured the opto-physical properties of micro lens and then have also tested the possibility of MLA applications.