• Title/Summary/Keyword: Micro Machining Technology

Search Result 361, Processing Time 0.024 seconds

Development of Hybrid Machining System and Hybrid Process Technology for Ultra-fine Planing and Micro Punching (초정밀 평삭가공과 마이크로 펀칭가공을 위한 하이브리드 가공장비 및 공정기술 개발)

  • Kim, Han-Hee;Jeon, Eun-Chae;Cha, Jin-Ho;Lee, Je-Ryung;Kim, Chang-Eui;Choi, Hwan-Jin;Je, Tae-Jin;Choi, Doo-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.10-16
    • /
    • 2013
  • Ultra-fine planing and micro punching are separately used for improving surface roughness and machining dot patterns, respectively, of metal molds. If these separate machining processes are applied for machining of identical molds, there could be an aligning mismatch between the machine tool and the mold. A hybrid machining system combining ultra-fine planing and micro punching was newly developed in this study in order to solve this mismatch; hybrid process technology was also developed for machining dot patterns on a mirror surface of a metal mold. The hybrid machining system has X, Y, and Z axes, and a cam axis for ultra-fine planing. The cam axis and attachable and removable solenoid actuators for micro punching can make large and small sizes of dot patterns, respectively. Ultra-fine planing was applied in the first place to improve the surface roughness of a metal mold; the measured surface roughness was about 20nm. Then, micro punching was applied to machine dot patterns on the same mold. It was possible to control the diameter of the dot patterns by changing the input voltage of the solenoid actuator. Before machining, severe inhomogeneous plastic deformation around the machined dot patterns was also removed by annealing heat treatment. Therefore, it was verified that metal molds with dots patterns for optical products can be machined using a hybrid machining system and the hybrid process technology developed in this study.

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

A Study on the Micro Tool Fabrication using Electrolytic In-process Dressing (전해 연속 드레싱을 이용한 마이크로 공구 제작)

  • 이현우;최헌종;이석우;최재영;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.171-178
    • /
    • 2002
  • With increasing the needs for micro and precision parts, micro machining technology using micro tools has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. Though these micro tools have developed rapidly, it is difficult to apply them to micro fabrication technologies, because of the inherent manufacturing. In this study, micro tools (WC) to produce micro structures and parts were manufactured by cylindrical grinding machine employing ELID (Electrolytic In-process Dressing) technique and the micro tools are fabricated as square shape with the dimension less than 100${\mu}{\textrm}{m}$. With the micro tools on the same machine, characteristics of micro grooving and drilling are evaluated. Also we compare normal micro machining with ultrasonic micro machining on the vibration table. It is confirmed that the developed micro tools are fully applicable to micro grooving, micro drilling and free form cutting.

A Study on the Machining of Fresnel Lens Mould (Fresnel 렌즈 금형 가공기술 연구)

  • Je, Tae-Jin;Hwang, Gyeong-Hyeon;Lee, Eung-Suk;Kim, Jae-Gu
    • 연구논문집
    • /
    • s.25
    • /
    • pp.105-113
    • /
    • 1995
  • Fresnel lenses are developed for flat optics with the optical characteristics close to aspherical lens such as sharp focusing and dispersion instead of spherical or aspherical surface. Usually, these fresnel lenses and diffraction gratings are machined by high-energy beam such as electron beam machining, but recently with the development of ultra precision machine tool and machining technology, 3-dimension micro machining becomes preferable. This study on the micro machining of fresnel lens is carried out to develop the basic technology of ultra precision micro machining. The machined lens mold will be used for the manufacturing of fresnel lens with 120mm focal distance using synthetic resin material with 1.49 refractive index(PMMA), and the shape of lens is 48mm diameter, $300\mum$ pitch and about $5-700\mum$depth of groove in brass.

  • PDF

An Evaluation of Machining Characteristics in Micro-scale Milling Process by Finite Element Analysis and Machining Experiment (유한요소해석과 가공실험을 통한 마이크로 밀링가공의 가공특성평가)

  • Ku, Min-Su;Kim, Jeong-Suk;Kim, Pyeoung-Ho;Park, Jin-Hyo;Kang, Ik-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • Analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.

Optimal Design of Micro Machine Tool for Micro Precision Machining (미소가공을 위한 마이크로 공작기계 최적설계)

  • Hwang Joon;Chung Eui-Sik;Liang Steven Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.477-478
    • /
    • 2006
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications.

  • PDF

Tool Path Generation for Micro-Abrasive Jet Machining Process with Micro-Mask (마이크로 마스크를 가진 미세입자분사가공을 위한 가공경로의 생성)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.95-101
    • /
    • 2011
  • Micro-abrasive jet machining(${\mu}AJM$) using mask is a fine machining technology which can carve a figure on a material. The mask should have holes exactly same as the required figure. Abrasive particles are jetted into the holes of the mask and it collide with the material. The collision break off small portion of the material. And the ${\mu}AJM$ nozzle should move all over the machining area. However, in general the carving shape is modeled as in a bitmap figure, because it often contains characters. And the mask model is also often modeled from the bitmap image. Therefore, the machining path of the ${\mu}AJM$ also efficient if it can be generated from the bitmap image. This paper suggest an algorithm which can generate ${\mu}AJM$ tool path directly from the bitmap image of the carving figure. And shows some test results and applications.

Micro cutting process technology for micro molds parts (마이크로 금형 부품을 위한 마이크로 절삭가공 기술)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Kim, Gun-Hee;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 2019
  • In this paper, we studied the micro tool deflection, micro cutting with low temperature, and deformation of micro ribs caused by cutting forces. First, we performed an integrated machining error compensation method based on captured images of tool deflection shapes in micro cutting process. In micro cutting process, micro tool deflection generates very serious problems in contrast to macro tool deflection. To get the real images of micro tool deflection, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool path. Second, in macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this passibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed. Third, the micro pattern was deformed by the cutting forces and the shape error occurred in the sidewall multi-step cutting process were minimized. As the results, the relationship between the cutting conditions and the deformation of micro-structure during micro cutting process was investigated.

마이크로 플라즈마 전극가공을 위한 FIB 연구

  • 최헌종;강은구;이석우;홍원표
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.229-233
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments of the micro plasma electrode fabrications using FIB. The sputtering of FIB has one major problem that is redeposited by sputtered material including $Ga^+$ ion source. Therefore we have verified the effect of the reposition by EDX. And the optimal condition is suggested to machine the micro plasma electrode.

  • PDF

A Study on the Machinability of the Micro-EDM Depending on the Materials (재료변화에 따른 Micro-EDM에서의 가공성에 관한 연구)

  • Lee, Sang-Kuk;Kim, Tae-Hyun;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.658-665
    • /
    • 2012
  • Micro-EDM is widely used in metallic pattern, electronics, nuclear power and industry in the form of precision process. The improvement of Electro Discharge Machining has been on a steady progress since $19^{th}$ century. The technology has overcome the limits of the traditional precision process, enabling micro-EDM, micro electrolytic machining, micro drilling, micro punching and laser beam machining, which create versatile products with smaller sizes. What have been known about the major feature of Micro-EDM is high thermal energy so that their products are free from the hardness of their products as long as they are electrical conductor. However, each metal is suspected to have different features and natures even if they are created through the same procedure. In this thesis, the methodology of Micro-EDM and how to categorize them are explained. Also, the nature of the examined materials with surface shape and surface roughnes are analyzed. The results of the experiments are expected to understand surface roughness and workability of other materials for Micro-EDM.