• Title/Summary/Keyword: Micro Chip

Search Result 530, Processing Time 0.025 seconds

Study of On-chip Liquid Cooling in Relation to Micro-channel Design (마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.31-36
    • /
    • 2015
  • The demand for multi-functionality, high density, high performance, and miniaturization of IC devices has caused the technology paradigm shift for electronic packaging. So, thermal management of new packaged chips becomes a bottleneck for the performance of next generation devices. Among various thermal solutions such as heat sink, heat spreader, TIM, thermoelectric cooler, etc. on-chip liquid cooling module was investigated in this study. Micro-channel was fabricated on Si wafer using a deep reactive ion etching, and 3 different micro-channel designs (straight MC, serpentine MC, zigzag MC) were formed to evalute the effectiveness of liquid cooling. At the heating temperature of $200^{\circ}C$ and coolant flow rate of 150ml/min, straight MC showed the high temperature differential of ${\sim}44^{\circ}C$ after liquid cooling. The shape of liquid flowing through micro-channel was observed by fluorescence microscope, and the temperarue differential of liquid cooling module was measuremd by IR microscope.

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Optimal Design and Experiment of One Chip Type SAW Duplexers using Micro_Strip Line Lumped Elements (마이크로 스트립라인 집중소자를 이용한 일체형 SAW 듀플렉서의 최적설계 및 실험)

  • 이승희;노용래
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.647-655
    • /
    • 2003
  • Commonly used SAW duplexers have a difficulty on manufacture so that a transmission line is printed on the package or an LTCC multi-layer is needed because a quarter-wave transmission line which is a kind of an isolation network is applied to the SAW duplexers. In this study, new structures of one chip type SAW duplexers are proposed. In the proposed structure, Tx and Rx SAW ladder filters and isolation networks are located on a single 36LiTaO$_3$ piezoelectric substrate. The manufacture process is very simple than commonly used product. It is possible to improve tile performance by means of optimizing the micro-strip line lumped elements. It is easy to integrate and modulate with other surrounding components. The optimal design techniques can be applied to other kind of multi-port devices.

A Study of On-Off Solenoid Actuator (On-Off 솔레노이드 엑츄에이터의 특성 연구)

  • Jeon, Yong-Sik;Kim, Dong-Soo;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.154-155
    • /
    • 2007
  • Put Recently, development of micro valves that operate by compressed air has received significant attention in the fields of the micro fluid chip for medical applications or production lines of semi-conduct chip for electronic goods. Especially it is required that high-speed responsibility and lower power in optimal design of these micro valves. The primary objective of this study is to compare the optimally designed Solenoid Valve with the actually produced one which can highly improve the efficiency by providing optimal current according to mechanical load.

  • PDF

A Disposable BioChip for Single Cell Manipulation

  • Yoon, Euisik
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.10a
    • /
    • pp.1-15
    • /
    • 2004
  • o Various microfluidic components including mixromixers and micropumps have been developed for disposable biochip applications. o Single cell capturing, positioning and nanoliter drug injection chip has been demostrated. o Multi-channel, two-dimensional micro-well array has been fabricated and cell capturing and specific reagent injection have been performed.

  • PDF

A Continuous Electrical Cell Lysis Chip using a DC Bias Voltage for Cell Disruption and Electroosmotic Flow (한 쌍의 전극으로 전기 삼투 유동과 세포 분쇄 기능을 동시에 구현한 연속적인 세포 분쇄기)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.831-835
    • /
    • 2008
  • We present a continuous electrical cell lysis chip, using a DC bias voltage to generate the focused high electric field for cell lysis as well as the electroosmotic flow for cell transport. The previous cell lysis chips apply an AC voltage between micro-gap electrodes for cell lysis and use pumps or valves for cell transport. The present DC chip generates high electrical field by reducing the width of the channel between a DC electrode pair, while the previous AC chips reducing the gap between an AC electrode pair. The present chip performs continuous cell pumping without using additional flow source, while the previous chips need additional pumps or valves for the discontinuous cell loading and unloading in the lysis chambers. The experimental study features an orifice whose width and length is 20 times narrower and 175 times shorter than the width and length of a microchannel. With an operational voltage of 50 V, the present chip generates high electric field strength of 1.2 kV/cm at the orifice to disrupt cells with 100% lysis rate of Red Blood Cells and low electric field strength of 60 V/cm at the microchannel to generate an electroosmotic flow of $30{\mu}m/s{\pm}9{\mu}m/s$. In conclusion, the present chip is capable of continuous self-pumping cell lysis at a low voltage; thus, it is suitable for a sample pretreatment component of a micro total analysis system or lab-on-a-chip.

A Study on the Flow Velocity of Micro Channels Depending on Surface Roughness (표면 거칠기에 따른 마이크로 채널의 유속에 관한 연구)

  • Park, Hyun-Ki;Kim, Jong-Min;Hong, Min-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Micro machining can manufacture complex shapes with high accuracy. Especially, this enables wide application of micro technology in various fields. For example, micro channels allow fluid transfer, which is a widely used technology. Therefore, liquidity research of flow in micro channels and micro channel manufacturing with use of various materials and cutting conditions has very important meaning. In this study, to find out correlation between fluid velocity in micro channels and surface roughness, we manufactured micro channels using micro end-mill and dropped ethanol into micro channels. We compared several surface roughness and fluid velocity in micro channels that were created by various processing conditions. Finally, we found out relationship between fluid velocity and surface roughness in micro channels of different materials.

초소형 열교환기 기술

  • 이기우
    • The Magazine for Energy Service Companies
    • /
    • s.13
    • /
    • pp.50-55
    • /
    • 2001
  • 최근의 계속된 칩(Chip)기술의 발전으로 전자부품의 고성능화가 가능해 졌지만, 그에 따라서 부수적으로 전자제품으로부터 발생되는 열로 인한 많은 열적인 문제도 야기되었다. 칩자체의 초소형화와 고성능화는 전자, 통신, 항공 우주, 각종 에너지 시스템들의 소형화가 더욱 가능해졌고, 또한 이러한 시스템들의 열적인 문제를 해결할 장치들도 초소형화하는 제품들이 필요하게 되었다. 따라서 본 기술에서는 초소형 전자기기시스템(Micro-Electro Mechanical System) 기술의 발전에 따라 가공이 가능하게 된 초소형 열교환기(Micro Heat Exhanger)에 관한 기술을 초소형 채널 열교환기(Micro Channel Heat Exchanger), 그리고 초소형 히트파이프 열교환기(Micro Heat Pipe Heat Exchanger)와 같이 세 가지로 분류하여 그 기술의 현재와 앞으로의 전망을 소개하고자 한다.

  • PDF

Ultra-precision Singulation of Micro BGA using Multi Blade (멀티블레이드를 이용한 Micro BGA의 초정밀 싱귤레이션)

  • 김성철;이은상;이해동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.861-864
    • /
    • 1997
  • Singulation is a process that cutting for separating a chip individually after finishing packaging process(micro BGA etc.). For shortening the process of singulation, we proposed the singulation using multi-blade. This paper introduced a method of multi-blade singulation and investigated a result of application and problems. The efficiency of singulation process was improved five times better than the single-blade by the singulation using Multi-blade.

  • PDF