• Title/Summary/Keyword: Micro Cantilever Beam

Search Result 45, Processing Time 0.032 seconds

Dynamic Analysis of Micro Cantilever Beams Undertaking Electrostatic Forces (정전기력을 받는 마이크로 외팔보의 동적 해석)

  • 정강식;문승재;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.315-319
    • /
    • 2004
  • Static and dynamic responses of micro cantilever beam structures undertaking electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as resonant frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the applied voltage influences the deflection and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

  • PDF

Shape Optimization of a Micro-Static Mixer (마이크로 믹서의 형상 최적화)

  • 한석영;김성훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.166-171
    • /
    • 2004
  • In this study, shape optimization of micro-static mixer with a cantilever beam was accomplished for mixing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

  • PDF

Deflection of a Thin Solid Structure by a Thermal Bubble (열 기포에 의한 고체 박막의 변형 해석)

  • Kim, Ho-Young;Lee, Yoon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.

Response and Modal Analyses of Micro Double Cantilever Beams Interacted by Electrostatic Force (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.656-661
    • /
    • 2004
  • Static and dynamic responses of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

  • PDF

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

Parameter Optimization of a Micro-Static Mixer Using Successive Response Surface Method (순차적 반응표면법을 이용한 마이크로 정적 믹서의 최적설계)

  • Han, Seog-Young;Maeng, Joo-Sung;Kim, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1314-1319
    • /
    • 2004
  • In this study, parameter optimization of micro-static mixer with a cantilever beam was accomplished for maximizing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

Responses and Modal Analyses of Micro Double Cantilever Beams Interacted by Elctrostatic Forces (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.199-205
    • /
    • 2005
  • The governing equations of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for applied voltages. In particular, it is investigated how the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics. This study can help to design MEMS structures and to predict the performances with respect to manufacturing tolerances.

Dynamic Analysis of Micro Cantilever Beams Undertaking Electrostatic Forces (정전기력을 받는 마이크로 외팔보의 동적 해석)

  • Jung Kang-Sik;Moon Seung-Jae;Yoo Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.846-851
    • /
    • 2004
  • Static and dynamic responses of micro cantilever beam structures undertaking electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as resonant frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the applied voltage influences the deflection and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

Design of polycrystalline 3C-SiC micro beam resonators with corrugation (주름진 다결정 3C-SiC 마이크로-빔 공진기의 설계)

  • Nguyen-Duong, The-Nhan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.74-75
    • /
    • 2008
  • This work has suggested corrugation beam as a new structure for mechanical resonators. Micro beam resonators based on 3C-SiC films which have two side corrugations along the length of beams were simulated by finite-element modeling and compared to a flat rectangular beam with the same dimension. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, this frequency reaches 1.252 MHz with the corrugated cantilever which has the same dimension with flat type but corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$. It is expected that mechanical resonators with corrugations will be very helpful for the research of sensing devices with high-resolution, high-performance oscillators and filters in wireless communications as well as measurement in basic physics.

  • PDF

Design of Polycrystalline 3C-SiC Micro Beam Resonators with Corrugation

  • Chung, Gwiy-Sang;Nhan, Nguyen Duong The;Thach, Phan Duy
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.193-197
    • /
    • 2008
  • On the purpose of increasing resonant frequency without sacrificing quality factor as well as much decreasing dimensions, corrugated micro beam resonator based on polycrystalline 3C-SiC films is the applicable solution. In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same-size flat rectangular. With the dimension of 36x12x0.5 ${\mu}m^{3}$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size but corrugation width of 6 ${\mu}m$ and depth of 0.4 ${\mu}m$, the corrugated cantilever reaches the resonant frequency at 1.252 MHz.