• Title/Summary/Keyword: Micro Cantilever

Search Result 135, Processing Time 0.025 seconds

A study on MicroCantilever Deflection for the Infrared Image Sensor using Bimetal Structure (바이메탈형 적외선 이미지 센서 제작과 칸틸레버 변위에 관한 고찰)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.34-38
    • /
    • 2005
  • This is a widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. Today, a large number of uncooled infrared detector developments are under progress due to the availability of silicon technology that enables realization of low cost IR sensor. System prices are continuing to drop, and swelling production volume will soon drive process substantially lower. The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple Structurefor developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. This paper reports a micromachined silicon uncooled thermal imager intended for applications in automated process control. This paper presents the design, fabrication, and the behavior of cantilever for thermomechanical sensing.

  • PDF

Stress Measurement of films using surface micromachined test structures (표면 미세 가공된 구조체를 이용한 박막의 응력 측정)

  • 이창승;정회환;노광수;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.721-725
    • /
    • 1996
  • The microfabricated test structures were used in order to evaluate the stress characteristics in films. The test structures were fabricated using surface micromachining technique, including HF vapor phase etching as an effective release method. The fabricated structures were micro strain gauge, cantilever-type vernier gauge and bridge for stress measurement, and cantilever for stress gradient measurement. The strain was measures by observing the deformation of the structures occurred after release etching and the amount of deformation can be detected by micro vernier gauge, which has gauge resolution of 0.2${\mu}{\textrm}{m}$. The detection principles and the degree of precision for the measured strain were also discussed. The characteristics of residual stress in LPCVD polysilicon films were studied using these test structures. The stress gradient due to the stress variation through the film thickness was calculated by measuring the deflection at the cantilever free end.

  • PDF

Responses and Modal Analyses of Micro Double Cantilever Beams Interacted by Elctrostatic Forces (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.199-205
    • /
    • 2005
  • The governing equations of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for applied voltages. In particular, it is investigated how the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics. This study can help to design MEMS structures and to predict the performances with respect to manufacturing tolerances.

Dynamic Analysis of Micro Cantilever Beams Undertaking Electrostatic Forces (정전기력을 받는 마이크로 외팔보의 동적 해석)

  • Jung Kang-Sik;Moon Seung-Jae;Yoo Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.846-851
    • /
    • 2004
  • Static and dynamic responses of micro cantilever beam structures undertaking electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as resonant frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the applied voltage influences the deflection and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

Design of polycrystalline 3C-SiC micro beam resonators with corrugation (주름진 다결정 3C-SiC 마이크로-빔 공진기의 설계)

  • Nguyen-Duong, The-Nhan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.74-75
    • /
    • 2008
  • This work has suggested corrugation beam as a new structure for mechanical resonators. Micro beam resonators based on 3C-SiC films which have two side corrugations along the length of beams were simulated by finite-element modeling and compared to a flat rectangular beam with the same dimension. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, this frequency reaches 1.252 MHz with the corrugated cantilever which has the same dimension with flat type but corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$. It is expected that mechanical resonators with corrugations will be very helpful for the research of sensing devices with high-resolution, high-performance oscillators and filters in wireless communications as well as measurement in basic physics.

  • PDF

Response and Modal Analyses of Micro Double Cantilever Beams Interacted by Electrostatic Force (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.656-661
    • /
    • 2004
  • Static and dynamic responses of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for several sets of beam properties and applied voltages. It is shown that the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics significantly. Such information can be usefully employed for the design of MEMS structures.

  • PDF

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

Detection of Resonance Frequency of Micro Mechanical Devices Using Optical Method and Their Application for Mass Detection (광학적 방법을 통한 마이크로 역학 소자의 공진주파수 측정법과 이를 이용한 마이크로 캔티레버 공진기의 질량 변화 연구)

  • Kim, Hak-Seong;Lee, Sang-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • We have developed the detection method of the resonance frequency of micro/nano mechanical resonator using optical method. The optical interferometery method enabled us to detect the displacement change of resonators within several nm scale. The micro mechanical resonator was produced by attaching a micro mechanical cantilever to a piezo ceramic. The mass of cantilever was increased by evaporating Au using electron beam evaporator and the mass variation was estimated by detecting the resonance frequency changes.

Temperature Characteristics of Polycrystalline 3C-SiC Micro Resonators (다결정 3C-SiC 마이크로 공진기의 온도특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.314-317
    • /
    • 2009
  • This paper describes the temperature characteristics of polycrystalline 3C-SiC micro resonators. The $1.2{\mu}m$ and $0.4{\mu}m$ thick polycrystalline 3C-SiC cantilever and doubly clamped beam resonators with $60{\sim}100{\mu}m$ lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at temperature range of $25{\sim}200^{\circ}C$. The TCF(Temperature Coefficient of Frequency) of 60, 80 and 100 On long cantilever resonators were -9.79, -7.72 and -8.0 ppm/$^{\circ}C$. On the other hand, TCF of 60, 80 and $100{\mu}m$ long doubly clamped beam resonators were -15.74, -12.55 and -8.35 ppm/$^{\circ}C$. Therefore, polycrystalline 3C-SiC resonators are suitable with RF MEMS devices and bio/chemical sensor applications in harsh environments.

A Study on the Development of a Cantilever & Swing-Type Fast Tool Servo with Rotational Moment Hinge Design (회전모멘트 힌지 설계에 따른 캔틸레버형 횡방향 구동 Fast Tool Servo 연구 개발에 관한 고찰)

  • Lee, Seung Jun;Jeong, Jae Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.43-49
    • /
    • 2020
  • The growth of the AR/VR market due to the advent of the 4th Industrial Revolution begins with the development of the display industry. The development of OLED and flexible displays is further accelerated by the development of R2R technology. Micro-processing technology using a fast tool servo (FTS), the core technology in R2R processes, is making technological progress in increasingly diverse ways. This paper proposes a method to develop an FTS for horizontal driving and presents this method through experiments and analyses. To develop a swing-type FTS based on a seesaw motion, a rotational moment hinge structure was designed for each type, and research was conducted to determine an effective design method. A cantilever-based swing-type FTS was developed in two variations: one with single-side hinges and another with dual-side hinges. The parameters in the design of the swing-type FTS are rotational moment, natural frequency, and material selection. In conclusion, an FTS with a single-side hinge demonstrates the high performance required for micro processing.