Browse > Article
http://dx.doi.org/10.4313/JKEM.2009.22.4.314

Temperature Characteristics of Polycrystalline 3C-SiC Micro Resonators  

Chung, Gwiy-Sang (울산대학교 전기전자정보시스템공학부)
Lee, Tae-Won (울산대학교 전기전자정보시스템공학부)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.22, no.4, 2009 , pp. 314-317 More about this Journal
Abstract
This paper describes the temperature characteristics of polycrystalline 3C-SiC micro resonators. The $1.2{\mu}m$ and $0.4{\mu}m$ thick polycrystalline 3C-SiC cantilever and doubly clamped beam resonators with $60{\sim}100{\mu}m$ lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at temperature range of $25{\sim}200^{\circ}C$. The TCF(Temperature Coefficient of Frequency) of 60, 80 and 100 On long cantilever resonators were -9.79, -7.72 and -8.0 ppm/$^{\circ}C$. On the other hand, TCF of 60, 80 and $100{\mu}m$ long doubly clamped beam resonators were -15.74, -12.55 and -8.35 ppm/$^{\circ}C$. Therefore, polycrystalline 3C-SiC resonators are suitable with RF MEMS devices and bio/chemical sensor applications in harsh environments.
Keywords
Polycrystalline 3C-SiC; Resonator; Cantilever; Doubly clamped beam;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 G. S. Chung and C. M. Ohn, 'Magnetron reactive ion etching of polycrystalline 3C-SiC thin films', J. Korean Phys. Soc., Vol. 51, p. 1673, 2007   DOI   ScienceOn
2 정귀상, 이태원, '다결정 SiC 마이크로 공진기의 제작과 그 특성', 센서학회지, 17권, 6호, p. 425, 2008   DOI
3 U. Gysin, S. Rast, P. Ruff, E. Meyer, D. W. Lee, P. Vettiger, and C. Gerber, 'Temperature dependence of the force sensitivity of silicon cantilevers', Phy. Rev. B, Vol. 69, p. 045403-1, 2004   DOI   ScienceOn
4 C. M. Su, M. wuttig, A. Fekade, and M. Spencer, 'Elastic and anelastic properties of chemical vapor deposited epitaxial 3C-SiC', J. Appl. Phys., Vol. 77, p. 5611, 1995   DOI   ScienceOn
5 H. Guckel, C. Rypstat, M. Nesnidal, J. D. Zook, D. W. Burns, and D. K. Arch, 'Polysilicon resonant microbeam technology for high performance sensor applications', in Proc. IEEE Solid State Sensor and Actuator Workshop, Hilton Head, SC, p. 153, 1992
6 G. Stemme, 'Resonant silicon sensors', J. Micromech. Microeng., Vol. 1, p. 113, 1991   DOI   ScienceOn
7 M. Mehregany, C. A. Zorman, N. Rajan, and C. H. Wu, 'Silicon carbide MEMS for harsh environments', Porc. IEEE, Vol. 86, p. 1594, 1998   DOI   ScienceOn
8 Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, and M. Mehregany, 'Mono-crystalline silicon carbide nanoelectromechanical systems', Appl. Phys. Lett., Vol. 78, p. 165, 2001   DOI   ScienceOn
9 P. S. Waggoner and H. G. Craighead, 'Micro- and nanomechanical sensors for environmental, chemical, and biological detection', Lap Chip, Vol. 7, p. 1238, 2007   DOI   ScienceOn
10 K. Wang, A. C. Wong, and C. T. C. Nguyen, 'VHF free-free beam high Q micro- mechanical resonators', J. Microelectromech. Syst., Vol. 9, p. 347, 2000   DOI   ScienceOn
11 정귀상, 김강산, 정준호, 'CVD에 의한 M/ NEMS용 다결정 3C-SiC 박막 성장', 센서학회지, 16권, 2호, p. 85, 2007