• Title/Summary/Keyword: Micro Cantilever

Search Result 135, Processing Time 0.03 seconds

Study on the Piezoelectric Bender Actuator for Small Walking Robots

  • Park, Min Ho;Park, Jong Man;Song, Chi Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.276-280
    • /
    • 2020
  • A linear piezoelectric actuator that utilizes the elliptical motion of the two tips of the actuator is proposed. This device is easy to fabricate owing to its simple structure, consisting of three piezo ceramic benders and is suitable for use in micro robotic applications. A π-shaped structure, which was composed of four piezo ceramic benders, was constructed. Two of the benders were positioned on the center of the actuator, and the joints were attached at the ends of the cantilever. The other two benders were positioned on the side of the actuator and were attached between the joint and the tips. The actuator structure was designed to obtain the first bending mode of the horizontal vibration and the vertical vibration at the same frequency, resulting in elliptical motions at the tips. When two sinusoidal wave voltages with a 90-degree phase difference were applied to the two pairs of the actuator benders, elliptical motions were obtained at the tips. The driving characteristics of the prototype actuator were then measured using a laser doppler vibrometer.

Research for Measurement and Modeling on Blocked Force of Electroactive Paper (생체 모방 종이 작동기 힘의 측정 및 모델링에 관한 연구)

  • Kang, Yu-Keun;Kim, Jae-Hwan;Jung, Woo-Chul;Song, Chun-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • Generally, characteristics of electromechanical actuators are coupled with the mechanical and the electrical properties. Important mechanical parameters of these actuators are the achievable force and displacement in the presence of electric field. These mechanical parameters are related to the stress and strain of the materials and the actuator geometry. This paper presents how to measure the blocked force by using the micro-balance. The blocked force is defined as the force produced by the transducer under an applied voltage when the tip is constrained to zero motion. Also, a theoretical force by using the cantilever beam model is calculated under elastic domain. From the sample of 4 cm $\times$ 1 cm $\times$ 20 $\mu$m, the blocked farce measured from the equipment is 20.3 $\mu$N at 8 V$_{DC}$. By comparing it with the theoretical value, 24.9 $\mu$N, the blocked force measurement is acceptable. The furce measurement is also investigated with different AC electric fields and the frequency.

  • PDF

Chip-scale Temperature-compensated Superstructured Waveguide Bragg Grating Based Multiparametric Sensor

  • Vishwaraj, Naik Parrikar;Nataraj, Chandrika Thondagere;Jagannath, Ravi Prasad Kogravalli;Gurusiddappa, Prashanth;Talabattula, Srinivas
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • In this paper we propose and theoretically analyze a monolithic multiparametric sensor consisting of a superstructure of surface-relief waveguide Bragg gratings (WBGs), a micro-machined diaphragm, and a cantilever beam. Diaphragms of two different configurations, namely circular and square, are designed and analyzed separately for pressure measurement. The square diaphragm is then selected for further study, since it shows relatively higher sensitivity compared to the circular one, as it incurs more induced stress when any pressure is applied. The cantilever beam with a proof mass is designed to enhance the sensitivity for acceleration measurement. A unique mathematical method using coupled-mode theory and the transfer-matrix method is developed to design and analyze the shift in the Bragg wavelength of the superstructure configuration of the gratings, due to simultaneously applied pressure and acceleration. The effect of temperature on the wavelength shift is compensated by introducing another Bragg grating in the superstructure configuration. The measured sensitivities for pressure and acceleration are found to be 0.21 pm/Pa and 6.49 nm/g respectively.

A hybrid conventional computer simulation via GDQEM and Newmark-beta techniques for dynamic modeling of a rotating micro nth-order system

  • Fan, Linyuan;Zhang, Xu;Zhao, Xiaoyang
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.167-183
    • /
    • 2022
  • In this paper, the free and forced vibration analysis of rotating cantilever nanoscale cylindrical beams and tubes is investigated under the external dynamic load to examine the nonlocal effect. A couple of nonlocal strain gradient theories with different beams and tubes theories, involving the Euler-Bernoulli, Timoshenko, Reddy beam theory along with the higher-order tube theory, are assumed to the mathematic model of governing equations employing the Hamilton principle in order to derive the nonlocal governing equations related to the local and accurate nonlocal boundary conditions. The two-dimensional functional graded material (2D-FGM), made by the axially functionally graded (AFG) in conjunction with the porosity distribution in the radial direction, is considered material modeling. Finally, the derived Partial Differential Equations (PDE) are solved via a couple of the generalized differential quadrature element methods (GDQEM) with the Newmark-beta techniques for the time-dependent results. It is indicated that the boundary conditions equations play a crucial task in responding to nonlocal effects for the cantilever structures.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array (PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터)

  • Lee, Min-Seon;Na, Yong-Hyeon;Park, Jin-Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.

Nanoindentation Experiments on MEMS Device (Nanoindenter를 이용한 MEMS 제품의 기계적 특성 측정)

  • 한준희;박준협;김광석;이상율
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.657-661
    • /
    • 2003
  • The elastic moduli or fracture strengths of multi-layered film (SiO$_2$/po1y-Si/SiN/SiO$_2$, 2.77 $\mu\textrm{m}$ thick), CVD diamond film (1.6 $\mu\textrm{m}$ thick), SiO$_2$ film (1.0 $\mu\textrm{m}$ thick) and SiN film (0.43 $\mu\textrm{m}$ thick) made for the membrane of ink-jet printer head were measured with cantilever beam bending method using nanoindenter after fabricating in the form of micro cantilever beam (${\mu}$-CLB). And the elastic moduli of ${\mu}$-CLB of SiO$_2$ film and SiN film were compared with the value of each film on silicon substrate determined with nanoindentation method. The results showed that the modulus and strength of multi-layered film decrease from 68.08 ㎬ and 2.495 ㎬ to 56.53 ㎬ and 1.834 ㎬, respectively as the width of CLB increases from 18.5 $\mu\textrm{m}$ to 58.5 $\mu\textrm{m}$. And the elastic moduli of SiO$_2$ and SiN films measured with ${\mu}$-CLB bending method are 68.16 ㎬ and 215.45 ㎬, respectively and the elastic moduli of these films on silicon substrate measured with nanoindentation method are 98.78 ㎬ and 219.38 ㎬, respectively. These results show that with ${\mu}$-CLB bending technique, moduli can be measured to within 2%.

Characterization of thermally driven polysilicon micro actuator (폴리실리콘 마이크로 액츄에이터의 열구동 특성분석)

  • Lee, Chang-Seung;Lee, Jae-Youl;Chung, Hoi-Hwan;Lee, Jong-Hyun;Yoo, Hyung-Joun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF

Study on super-hydrophobic electro-spray micro thruster and measurement of micro scale thrust (초소수성 전기 분무 마이크로 추진 장치 및 마이크로 추력 측정)

  • Lee, Young-Jong;Yoo, Yong-Hoon;Tran, Si Bui Quang;Kim, Sang-Hoon;Park, Bae-Ho;Buyn, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • In this article, we fabricated polytetrafluoroethylene(PTFE) nozzle treated by ion beam, in order to fabricate polymer based electrospray micro thruster with super hydrophobic nozzle. To obtain the super hydrophobic surface, PTFE surface is treated by argon and oxygen plasma treatment process. The optimal condition is investigated argon and oxygen flow rate as well as the paalied energy level for the treatment process. Fabricated nozzle was evaluated by measuring contact angle, and the surface morphology was examined by using scanning electron microscope(SEM) and atomic force microscope(AFM). We observe that jetting becomes more stable and repeatable on the treated nozzle. And to evaluate performance of fabricated nozzle, we measure micro scale thrust using a cantilever and a nozzle treated by ion beam laser displacement sensor.

Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS

  • Singh R. Arvind;Yoon Eui-Sung;Kim Hong Joon;Kong Hosung;Jeong Hoon Eui;Suh Kahp Y.
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2005
  • Submicron-scale patterns made of polymethyl methacrylate (PMMA) were fabricated on silicon-wafer using a capillarity-directed soft lithographic technique. Polyurethane acrylate (PUA) stamps (Master molds) were used to fabricate the patterns. Patterns with three different aspect ratios were fabricated by varying the holding time. The patterns fabricated were the negative replica of the master mold. The patterns so obtained were investigated for their adhesion and friction properties at nano-scale using AFM. Friction tests were conducted in the range of 0-80 nN. Glass (Borosilicate) balls of diameter 1.25 mm mounted on cantilever (Contact Mode type NPS) were used as tips. Further, micro-friction tests were performed using a ball-on-flat type micro-tribe tester, under reciprocating motion, using a soda lime ball (1 mm diameter) under a normal load of 3,000 mN. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5\%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non-patterned sample (PMMA thin film) both at the nano and micro-scales, owing to their increased hydrophobicity and reduced real area of contact. In the case of patterns it was observed that their morphology (shape factor and size factor) was decisive in defining the real area of contact.