• Title/Summary/Keyword: MgO Adsorption

Search Result 194, Processing Time 0.021 seconds

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites (Mg2NiHx-5wt% CaO 복합재료의 수소화 속도)

  • SHIN, HYO-WON;HWANG, JUNE-HYEON;KIM, EUN-A;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

Protein Adsorption and Hydrodynamic Stability of a Dense, Pellicular Adsorbent in High-Biomass Expanded Bed Chromatography

  • Chow, Yen Mei;Tey, Beng Ti;Ibrahim, Mohd Nordin;Ariff, Arbakariya;Ling, Tae Chuan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.268-272
    • /
    • 2006
  • A dense, pellicular UpFront adsorbent ($p=1.5 g/cm^3$, UpFront Chromatography, Cophenhagen, Denmark) was characterized in terms of hydrodynamic properties and protein adsorption performance in expanded bed chromatography. Cibacron Blue 3GA was immobilised into the adsorbent and protein adsorption of bovine serum albumin (BSA) was selected to test the setup. The Bodenstein number and axial dispersion coefficient estimated for this dense pellicular adsorbent was 54 and $1.63{\times}10^{-5}m^2/s$, respectively, indicating a stable expanded bed. It could be shown that the BSA protein was captured by the adsorbent in the presence of 30% (w/v) of whole-yeast cells with an estimated dynamic binding capacity $(C/C_o = 0.01)$ of approximately 6.5 mg/mL adsorbent.

Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water

  • Jang, Hyun Min;Yoo, Seunghyun;Park, Sunkyu;Kan, Eunsung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.608-617
    • /
    • 2019
  • The adsorption of sulfamethoxazole (SMX) onto a NaOH-activated pine wood-derived biochar was investigated via batch experiments and models. Surprisingly, the maximum adsorption capacity of activated biochar for SMX (397.29 mg/g) was superior than those of pristine biochars from various feedstock, but comparable to those of commercially available activated carbons. Elovich kinetic and Freundlich isotherm models revealed the best fitted ones for the adsorption of SMX onto the activated biochar indicating chemisorptive interaction occurred on surface of the activated biochar. In addition, the intraparticle diffusion limitation was thought to be the major barrier for the adsorption of SMX on the activated biochar. The main mechanisms for the activated biochar would include hydrophobic, π-π interactions and hydrogen bonding. This was consistent with the changes in physicochemical properties of the activated biochar (e.g., increase in sp2 and surface area, but decrease in the ratios of O/C and H/C).

Adsorption and movement of Alachlor and Chlorothalonil in the representative soil of Cheju Island (제주도 대표 토양에서 Alachlor와 Chlorothalonil의 흡착과 이동 연구)

  • Hyun, Hae-Nam;Oh, Sang-Sil;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.135-143
    • /
    • 1995
  • This study was conducted to investigate the adsorption characteristics, distribution coefficients, and movement of alachlor(2-chloro-2', 6'-dimethyl-N-(methoxymethyl) acetanilide) and chlorothalonil(tetrachloroisophthalonitrile) for the 3 soils sampled from major soil groups in Cheju Island. Namwon, Jeju, and Mureng soils used in this study were classified as black volcanic ash soil, dark brown volcanic ash soil and dark brown nonvolcanic soil, respectively. Organic carbon content and CEC of Namwon soil were very high and those of Mureung soil were very low. Linear and Freundlich adsorption isotherms were the best to fit the adsorption of alachlor and chlorothalonil in the soils. K value, Freundlich coefficient, of alachlor for Namwon soil was 21.38, being 5.4 and 97.2 times higher than that for Jeju and Mureung soils respectively. The values of chlorothalonil for the soils were similar to those of alachlor but were much higher than them. When Mureung, Jeju and Namwon soil columns were leached with a solution containing 10.25 mg/l of alachlor and 1.50 mg/l of chlorothalonil, alachlor was first detected at 0.265, 0.47, and 1.86 pore volume (PV) and chlorothalonil was 3.71, 4.7 and 17.5 PV, respectively. The pore volumes at $C/C_o=1$ of alachlor in the leachates from Mureung, Jeju and Namwon soil columns were 1.1, 3.7 and 6.6 PV and those at $C/C_o=0.2$ of chlorothalonil were 7.5, 8.5 and 27.5, respectively. This means that the deceasing order of the mobility of the chemicals in soils was Mureung soil>Jeju soil${\gg}$Namwon soil. The pore volumes detecting $C/C_o=0.5$ of alachlor and $C/C_o=0.05$ of chlorothalonil in leachate were positively correlated with the distribution coefficients for the soils.

  • PDF

Properties and Functions of Melanin Pigment from Klebsiella sp. GSK

  • Sajjan, Shrishailnath S.;Anjaneya, O;Kulkarni, Guruprasad B.;Nayak, Anand S.;Mashetty, Suresh B.;Karegoudar, T.B.
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.60-69
    • /
    • 2013
  • Purified melanin pigment from Klebsiella sp. GSK was characterized by thermogravimetric, differential thermal, X-ray diffraction and elemental analysis. This melanin pigment is structurally amorphous in nature. It is thermally stable up to $300^{\circ}C$ and emits a strong exothermic peak at $700^{\circ}C$. Its carbon, hydrogen and nitrogen composition is 47.9%, 6.9% and 12.0%, respectively. It was used to scavenge metal ions and free radicals. After immobilizing the pigment and using it to adsorb copper and lead ions, the metal ion adsorption capacity was evaluated by atomic absorption spectroscopy (AAS) and the identity of melanin functional groups involved in the binding of metal ions was determined by Fourier transform infrared (FT-IR) spectroscopy. Batch adsorption studies showed that 169 mg/g of copper and 280 mg/g of lead were adsorbed onto melanin-alginate beads. The metal ion adsorption capacity of the melanin-alginate beads was relatively significant compared to alginate beads. The metal ion desorption capacity of HCl was greater (81.5% and 99% for copper and lead, respectively) than that of EDTA (80% and 71% for copper and lead, respectively). The ability of the melanin pigment to scavenge free radicals was evaluated by inhibition of the oxidation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and was shown to be about 74% and 98%, respectively, compared with standard antioxidants.

Adsorption of Cesium and Strontium Ions in Aqueous Phase Using Porous Metal Organic Frameworks Connected with Functional Group (작용기 적용 다공성 금속 유기골격체를 이용한 수중 세슘 및 스트론튬 이온의 흡착 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.97-108
    • /
    • 2021
  • In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3~5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.

Effects of Yellow Clay Contents on Removal Efficiency of Harmful Dinoflagellate Cochlodinium polykrikoides (적조생물 Cochlodinium polykrikodes 구제효율에 미치는 황토의 광물학적 특징)

  • PARK, Young-Tae;PARK, Ho-Sup;PARK, Tae-Gyu;AHN, Gyoung-Ho;SON, Moon-Ho;KIM, Pyoung-Joong;PARK, Mang-Eun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1662-1672
    • /
    • 2016
  • To address physicochemical factors of yellow clay for removing Cochlodinium polykrikoides blooms, the correlation of removal efficiency with mineralogical characteristics of yellow clay collected from various areas was surveyed. Yellow clay from different localities showed the wide range of chemical compositions $SiO_2$ : 43~71%, $Al_2O_3$ : 13~26%, $Fe_2O_3$ : 5~14%, MgO : 0.4~1.8%, $K_2O$ : 0.6~3.3%, L.O.I.(Loss of Ignition) : 4.5~15%. The mineral compositions of yellow clay were mainly consisted of quartz and feldspar including small amounts of kaolinite, chlorite, and Fe-oxides. The result of size analysis showed that $6{\Phi}(31{\sim}16{\mu}m)$ and $7{\Phi}(16{\sim}8{\mu}m)$ were dominated sizes. The zeta-potential were in the range of -4.1~-20.7mV(average -13.7). As increasing removal efficiency of C. polykrikoides, contents of $Al_2O_3$, $Fe_2O_3$ and L.O.I. in yellow clay increased, whereas $SiO_2$ content decreased. Furthermore, the amounts of silt mineral and small particle were high when the removal efficiency was high. According to factor analysis using principle component analysis, two components of factor 1 and factor 2 showed 79% of the total variance, which is related to cohesion and adsorption. Inducing cell lysis of C. polykrikoides by cohension and adsorption between C. polykrikoides and yellow clay.

Synthesis of mesoporous carbon supported CuO: a new sorbent for $CO_2$ Caapture (이산화탄소 포집용 CuO담지 메조포러스 탄소체 합성)

  • Kim, Dae-Kyung;Peng, Mei Mei;Lee, Joo-Bo;Jeong, Ui-Min;Back, Kyung-Ran;Song, Sung-Hwa;Aziz, Abidov;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.196-199
    • /
    • 2011
  • In this study we synthesized mesoporous carbon supported CuO by using mesoporous silica i.e. SBA-15 as the template and cupric nitrate trihydrate ($Cu(NO_3)_23H_2O$)as copper source. The porous CuO was characterized with XRD, TGA, SEM and BET. The result reveals porous CuO has good crystal structure with uniform size of spherical crystal particles. The surface are a ($S_{BET}$) of porous CuO was found to be $153.46m^2g^{-1}$ with a total pore volume ($V_p$)of$0.1516cm^3g^{-1}$ and average pore size of 3.9 nm which was much higher than that of commercial CuO ($S_{BET}$, $7.6m^2g^{-1}$; $V_p$, $0.01cm^3g^{-1}$). The obtained porous CuO was studied for adsorption of $CO_2$and the maximum $CO_2$ adsorption capacity was found to be 67.5 mg/g of the sorbent at $25^{\circ}C$.

  • PDF

Manganese removal by KMnO4: Effects of bicarbonate and the optimum conditions (과망간산칼륨을 이용한 용해성 망간 제거: 중탄산염 영향 및 최적조건)

  • Lee, Yong-Soo;Do, Si-Hyun;Kwon, Young-Eun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.207-213
    • /
    • 2016
  • This study is focused on manganese (Mn(II)) removal by potassium permanganate ($KMnO_4$) in surface water. The effects of bicarbonate on Mn(II) indicated that bicarbonate could remove Mn(II), but it was not effectively. When 0.5 mg/L of Mn(II) was dissolved in tap water, the addition of $KMnO_4$ as much as $KMnO_4$ to Mn(II) ratio is 0.67 satisfied the drinking water regulation for Mn (i.e. 0.05 mg/L), and the main mechanism was oxidation. On the other hand, when the same Mn(II) concentration was dissolved in surface water, the addition of $KMnO_4$, which was the molar ratio of $KMnO_4/Mn(II)$ ranged 0.67 to 0.84 was needed for the regulation satisfaction, and the dominant mechanisms were both oxidation and adsorption. Unlike Mn(II) in tap water, the increasing the reaction time increased Mn(II) removal when $KMnO_4$ was overdosed. Finally, the optimum conditions for the removals of 0.5 - 2.0 mg/L Mn(II) in surface water were both $KMnO_4$ to Mn(II) ratio is 0.67 - 0.84 and the reaction time of 15 min. This indicated that the addition of $KMnO_4$ was the one of convenient and effective methods to remove Mn(II).

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.