Browse > Article
http://dx.doi.org/10.4491/eer.2018.358

Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water  

Jang, Hyun Min (Department of Agricultural and Biological Engineering & Texas A&M AgriLife Research Center at Stephenville, Texas A&M University)
Yoo, Seunghyun (Department of Forest Biomaterials, North Carolina State University)
Park, Sunkyu (Department of Forest Biomaterials, North Carolina State University)
Kan, Eunsung (Department of Agricultural and Biological Engineering & Texas A&M AgriLife Research Center at Stephenville, Texas A&M University)
Publication Information
Environmental Engineering Research / v.24, no.4, 2019 , pp. 608-617 More about this Journal
Abstract
The adsorption of sulfamethoxazole (SMX) onto a NaOH-activated pine wood-derived biochar was investigated via batch experiments and models. Surprisingly, the maximum adsorption capacity of activated biochar for SMX (397.29 mg/g) was superior than those of pristine biochars from various feedstock, but comparable to those of commercially available activated carbons. Elovich kinetic and Freundlich isotherm models revealed the best fitted ones for the adsorption of SMX onto the activated biochar indicating chemisorptive interaction occurred on surface of the activated biochar. In addition, the intraparticle diffusion limitation was thought to be the major barrier for the adsorption of SMX on the activated biochar. The main mechanisms for the activated biochar would include hydrophobic, π-π interactions and hydrogen bonding. This was consistent with the changes in physicochemical properties of the activated biochar (e.g., increase in sp2 and surface area, but decrease in the ratios of O/C and H/C).
Keywords
Activated biochar; Antibiotics; Sulfamethoxazole (SMX); Water treatment; ${\pi}-{\pi}$ interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou Y, Liu X, Xiang Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017;245:266-273.   DOI
2 Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012;114:644-653.   DOI
3 Zhao H, Liu X, Cao Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016;310:235-245.   DOI
4 Kummerer K. The presence of pharmaceuticals in the environment due to human use - Present knowledge and future challenges. J. Environ. Manage. 2009;90:2354-2366.   DOI
5 Qi C, Liu X, Lin C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chem. Eng. J. 2014;249:6-14.   DOI
6 Kumar A, Xagoraraki I. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in US surface and finished drinking waters: A proposed ranking system. Sci Total Environ. 2010;408:5972-5989.   DOI
7 Liu J-L, Wong M-H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013;59:208-224.   DOI
8 Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011;45:1827-1833.   DOI
9 Peiris C, Gunatilake SR, Mlsna TE, Mohan D, Vithanage M. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresour. Technol. 2017;246:150-159.   DOI
10 Harvey OR, Herbert BE, Rhue RD, Kuo L-J. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ. Sci. Technol. 2011;45:5550-5556.   DOI
11 Yang X, Xu G, Yu H, Zhang Z. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresour. Technol. 2016;211:566-573.   DOI
12 Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR. Biochar from anaerobically digested sugarcane bagasse. Bioresour. Technol. 2010;101:8868-8872.   DOI
13 Gauden PA, Szmechtig-Gauden E, Rychlicki G, Duber S, Garbacz JK, Buczkowski R. Changes of the porous structure of activated carbons applied in a filter bed pilot operation. J. Colloid Interface Sci. 2006;295:327-347.   DOI
14 Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 2002;40:2177-2183.   DOI
15 Gicheva G, Yordanov G. Removal of citrate-coated silver nanoparticles from aqueous dispersions by using activated carbon. Colloids Surf. A 2013;431:51-59.   DOI
16 Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009;43:2419-2430.   DOI
17 Zheng H, Wang Z, Zhao J, Herbert S, Xing B. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ. Pollut. 2013;181:60-67.   DOI
18 Akhtar J, Amin NS, Aris A. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using $Fe_2O_3/CeO_2$ loaded activated carbon. Chem. Eng. J. 2011;170:136-144.   DOI
19 Boreen AL, Arnold WA, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environ. Sci. Technol. 2004;38:3933-3940.   DOI
20 de Amorim KP, Romualdo LL, Andrade LS. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: Performance, kinetics and reaction pathway. Sep. Purif. Technol. 2013;120:319-327.   DOI
21 Gao J, Pedersen JA. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 2005;39:9509-9516.   DOI
22 Chen H, Gao B, Li H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 2015;282:201-207.   DOI
23 Caliskan E, Gokturk S. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Sep. Sci. Technol. 2010;45:244-255.   DOI
24 Yu X, Zhang L, Liang M, Sun W. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J. 2015;279:363-371.   DOI
25 Tabish TA, Memon FA, Gomez DE, Horsell DW, Zhang S. A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci. Rep. 2018;8:1817.   DOI
26 Sun B, Lian F, Bao Q, Liu Z, Song Z, Zhu L. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole. Environ. Pollut. 2016;214:142-148.   DOI
27 Calisto V, Ferreira CI, Oliveira JA, Otero M, Esteves VI. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J. Environ. Manage. 2015;152:83-90.   DOI
28 Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Sornalingam K. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chem. Eng. J. 2017;311:348-358.   DOI
29 Lian F, Sun B, Song Z, Zhu L, Qi X, Xing B. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 2014;248:128-134.   DOI
30 Xie M, Chen W, Xu Z, Zheng S, Zhu D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014;186:187-194.   DOI
31 Shimabuku KK, Kearns JP, Martinez JE, Mahoney RB, Moreno-Vasquez L, Summers RS. Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res. 2016;96:236-245.   DOI
32 Marriott A, Hunt A, Bergström E, et al. Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy. Carbon 2014;67:514-524.   DOI
33 Yao Y, Zhang Y, Gao B, Chen R, Wu F. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. 2018:25:25659-25667.   DOI
34 Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, et al. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour. Technol. 2010;101:8389-8395.   DOI
35 Martinez F, Gomez A. Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion. Phys. Chem. Liq. 2002;40:411-420.   DOI
36 Jang HM, Yoo S, Choi Y-K, Park S, Kan E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 2018;259:24-31.   DOI
37 ASTM. Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. West Conshohocken: ASTM International; 2016.
38 Yoo S, Kelley SS, Tilotta DC, Park S. Structural characterization of loblolly pine derived biochar by X-ray diffraction and electron energy loss spectroscopy. ACS Sustain. Chem. Eng. 2018;6:2621-2629.   DOI
39 Daniels H, Brydson R, Rand B, Brown A. Investigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). Philos. Mag. 2007;87:4073-4092.   DOI
40 Zhang Z-l, Brydson R, Aslam Z, et al. Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope. Carbon 2011;49:5049-5063.   DOI
41 Teixido M, Pignatello JJ, Beltran JL, Granados M, Peccia J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol. 2011;45:10020-10027.   DOI
42 Zhu X, Liu Y, Zhou C, Luo G, Zhang S, Chen J. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 2014;77:627-636.   DOI
43 Park J, Hung I, Gan Z, Rojas OJ, Lim KH, Park S. Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour. Technol. 2013;149:383-389.   DOI
44 Hansch C, Leo A, Taft R. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991;91:165-195.   DOI
45 Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010;44:1247-1253.   DOI
46 Ji L, Liu F, Xu Z, Zheng S, Zhu D. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons. Environ. Sci. Technol. 2010;44:3116-3122.   DOI
47 Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 2009;43:2322-2327.   DOI
48 Chen W, Duan L, Wang L, Zhu D. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environ. Sci. Technol. 2008;42:6862-6868.   DOI
49 Ji L, Chen W, Zheng S, Xu Z, Zhu D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 2009;25:11608-11613.   DOI
50 Reguyal F, Sarmah AK. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and $17{\alpha}$-ethinylestradiol. Sci. Total Environ. 2018;628:722-730.   DOI
51 Chen H, Gao B, Li H. Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. J. Environ. Chem. Eng. 2014;2:310-315.   DOI
52 Yoo S. Structural characterizations of biomass-derived carbon materials and application as supercapacitor electrode [dissertation]. USA: North Carolina State Univ.; 2018.
53 Peng B, Chen L, Que C, et al Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by ${\pi}-{\pi}$ interactions. Sci. Rep. 2016;6:31920.   DOI