Browse > Article
http://dx.doi.org/10.13000/JFMSE.2016.28.6.1662

Effects of Yellow Clay Contents on Removal Efficiency of Harmful Dinoflagellate Cochlodinium polykrikoides  

PARK, Young-Tae (National Institute of Fisheries Science)
PARK, Ho-Sup (National Institute of Fisheries Science)
PARK, Tae-Gyu (National Institute of Fisheries Science)
AHN, Gyoung-Ho (National Institute of Fisheries Science)
SON, Moon-Ho (National Institute of Fisheries Science)
KIM, Pyoung-Joong (National Institute of Fisheries Science)
PARK, Mang-Eun (Pukyong National University)
Publication Information
Journal of Fisheries and Marine Sciences Education / v.28, no.6, 2016 , pp. 1662-1672 More about this Journal
Abstract
To address physicochemical factors of yellow clay for removing Cochlodinium polykrikoides blooms, the correlation of removal efficiency with mineralogical characteristics of yellow clay collected from various areas was surveyed. Yellow clay from different localities showed the wide range of chemical compositions $SiO_2$ : 43~71%, $Al_2O_3$ : 13~26%, $Fe_2O_3$ : 5~14%, MgO : 0.4~1.8%, $K_2O$ : 0.6~3.3%, L.O.I.(Loss of Ignition) : 4.5~15%. The mineral compositions of yellow clay were mainly consisted of quartz and feldspar including small amounts of kaolinite, chlorite, and Fe-oxides. The result of size analysis showed that $6{\Phi}(31{\sim}16{\mu}m)$ and $7{\Phi}(16{\sim}8{\mu}m)$ were dominated sizes. The zeta-potential were in the range of -4.1~-20.7mV(average -13.7). As increasing removal efficiency of C. polykrikoides, contents of $Al_2O_3$, $Fe_2O_3$ and L.O.I. in yellow clay increased, whereas $SiO_2$ content decreased. Furthermore, the amounts of silt mineral and small particle were high when the removal efficiency was high. According to factor analysis using principle component analysis, two components of factor 1 and factor 2 showed 79% of the total variance, which is related to cohesion and adsorption. Inducing cell lysis of C. polykrikoides by cohension and adsorption between C. polykrikoides and yellow clay.
Keywords
Yellow clay; Cochlodinium polykrikoides; Removal efficiency;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Nagasaki K. Tomaru Y. Nakanishi K. Hata N. Katanozaka N. Yamanaka S. Tanabe H. and Yamaguchi, M.(2003). Growth characteristics and intra-species host specificity of a large virus infecting the dinoflagellate Heterocapsa circularisquama. Appl. Environ. Microbiol. 69, 2580-2586.   DOI
2 National Fisheries Research & Development Institute, (1999). Management and mitigation techniques to minimize the impacts of harmful algae blooms. 527pp.
3 Pan G. Chen J. and Anderson D. M.(2011). Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10, 381-387.   DOI
4 Park H. S.(2007). Removal efficiency of Cochlodinium polykrikoides for the mineralogical characteristics of Hwangto on different localities. Master's dissertation. The Graduate School, Pukyong National University. 49pp.
5 Park J. B. Song Y. W. and Kwon. H. J.(1997). Adsorption characteristics of contaminants on soils with various organic carbon contents. J. Korean Soc. Civ. Eng., 17, 403-413.
6 Park Y. T. Lee C. K. Park T. G. Lee Y. and Bae H. M.(2012). Effects of yellow clay on the production of volatile fatty acids during the anaerobic decomposition of the red tide dinoflagellate Cochlodinium polykrikoides in marine sediments. J. Kor. Fish. Soc. 45(5), 472-479.
7 Park Y. T. Park J. B. Chung S. Y. Song B. S. Lim W. A. Kim C. H. and Lee, W. J.(1998). Isolation and algicidal properties of Micrococcus sp. LG-1 possessing killing activity for harmful Dinoflagellate Cochlodinium polykrikoides. J. Kor. Fish. Soc. 31, 767-773.
8 Rounsefell G. A. and Evans, J. E.(1958). Large-scale experimental test of copper sulfate as a control for the Florida red tide. US fish and wildlife service, Washington, DC. Spec. Sci. Rep, Fish No. 270.
9 Sengco M. R.(2001). The aggregation of clay minerals and marine microalgal cells: physicochemical theory and implications for controlling harmful algal blooms. In: Doctoral dissertation. Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography.
10 Sengco M. R. Li A. Tugend K. Kulis D. and Anderson D. M.(2001). Removal of red- and brown-tide cells using clay flocculation Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine Ecol. Prog. Ser. 210, 41-53.   DOI
11 Sengco M. R. and Anderson D. M.(2004). Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51, 169-172.   DOI
12 Sengco M. R. Hagstrom J. A. Grane li, E. and Anderson D. M.(2005). Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4, 261-274.   DOI
13 Seo K. S. Lee C. K. Park Y. T. and Lee, Y.(2008). Effect of yellow clay on respiration and phytoplankton uptake of bivalves. Fish. Sci. 74, 120-127.   DOI
14 Shirota A.(1989a). Red tide problem and countermeasures (1). Int. J. Aq. Fish. Technol. 1, 25-38.
15 Shirota A.(1989b). Red tide problem and countermeasures (2). Int. J. Aq. Fish. Technol. 1, 195-293.
16 Soballe D. M. and Threlkeld S. T.(1988). Algal-clay flocculation in turbid waters: variations due to algal and mineral differences. Verh. Int. Ver. Limnol. 23, 750-754.
17 Song Y. C. Sivakumar S. Woo J. H. Ko S. J. Hwang E. J. and Jo Q.(2010). Removal of Cochlodinium polykrikoides by dredged sediment: a field study. Harmful Algae 9, 227-232.   DOI
18 Song Y. K. Jung C. H. Son H. J. and Sohn I. S.(2006). Characterization of natural organic matter by rapid mixing condition. J. KSWW, 20, 559-571.
19 Yu Z. Sengco M. R. and Anderson D. M.(2004). Flocculation and removal of the brown tide organism Aureococcus anophagefferens (Chrysophyceae), using clays. J Appl. Phycol. 16, 101-110.   DOI
20 Sun X. X. Han K. N. Choi J. K. and Kim E. K.(2004). Screening of surfactants for harmful algal blooms mitigation. Marine Pollut. Bull. 48, 937-945.   DOI
21 Yu Z. Zou J. Z. and Ma X.(1994). Application of clays to removal of red tide organisms: coagulation of red tide organisms with clays. Chin. J. Oceanol. Limnol. 12, 193-200.   DOI
22 Yu Z. Zou J. Z. and Ma X.(1995). Application of clays to removal of red tide organisms: the coagulation of kaolin on red tide organisms. Chin. J. Oceanol. Limnol. 13, 316-324.
23 Yun S. J. Bae H. M. Heo S. and Lee P. Y.(1998). The removal efficiency of red-tide organisms depends on the size of yellow clay. Ann. Meet. J. Kor. Fish. Soc., 393-394.
24 Yun, J. S. Kim S. H. and Yoon C. H.(2003). Red-tide removal by loess spreading. J. of KSEE 25(3), 358-363.
25 Cho H. G. Cliff T. J. Gnanasiri S. and Premachandra G. S.(2006). Phosphate adsorption of Kaolinite KGa-1b(source clay). J. Miner. soc. Korea, 19(4), 247-258.
26 Anderson D. M.(1997). Turning back the harmful red tide. Nature 388, 513-514.   DOI
27 Anderson D. M. Senco M. R. Li A. and Beaulieu E.(2004). Control of florida red tide using phosphatic clay. Woods Hole Oceanographic Institute, MA. USA, 83p.
28 Balkis N. and Cagatay M. N.(2001). Factors controlling metal distributions in the surface sediments of the Erdek Bay, Sea of Marmara, Turkey. Environment International 27, 1-13.   DOI
29 Choi H. G. Kim P. J. Lee W. C. Yun S. J. Kim H. G. and Lee H. J.(1998). Removal efficiency of Cochlodinium polykrikoides by yellow loess. Korean J. Fish. Soc. 31, 109-113.
30 Doucette G. J. McGovern E. R. and Babinchak, J. A.(1999). Algicidal bacteria active against Gymnodinium breve(Dinophyceae). I. Bacterial isolation and characterization of killing activity. J. Phycol. 35, 1447-1454.   DOI
31 Jeong H. J. Kang H. J. Shim J. S. Park J. Y. Kim J. S. Song J. Y. and Choi H. J.(2001). Interations among the toxic dinoflagellate Amphidinium carterae, the hetero-trophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar. Ecol. Prog. Ser. 218, 77-86.   DOI
32 Han M. Y and Kim W.(1999). "A theoretical consideration of algae removal with clays," in proceeding of the fifth international symposium on advanced analytical techniques and application, Kyungnam Univ., Korea, 50-62.
33 Hwang J. Y.(1997). Characteristics and application of Macbansuk and Hwangto. In : Proceedings of the 10 years anniversity symposium. The Miner Soc Korea, 89-98.
34 Hwang J. Y. Jang M. I. Kim J. S. Cho W. M. Ahn B. S. and Kang S. W.(2000). Mineralogy and chemical composition of the residual soils(Hwangto) from South Korea. J. Miner. Soc. Korea 13, 147-163.
35 Imai I. Sunahara T. Nishikawa T. Hori Y. Kondo R. and Hiroishi S.(2001). Fluctuations of the red tide flagellates Chattonella spp.(Raphidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar. Biol. 138, 1043-1049.   DOI
36 Jang K. S. and Kang B. H.(2002). Adsorption characteristics of lead on kaolinite. Journal of KoSSGE. 7(4), 24-30.
37 Jeong H. J. Kim J. S. Yoo Y. D. Kim S. T. Song J. Y. Kim T. H. Seong K. A. Kang N. S. Kim M. S. Kim J. H. Kim S. Ryu J. Lee H. M. and Yih W. H.(2008). Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7, 368-377.   DOI
38 Kim J. J. Kim C. H. Takano Y. Jang I. K. Kim S. W. and Choi T. J.(2012). Isolation and physiological characterization of a new algicidal virus infecting the harmful dinoflagellate Heterocapsa pygmaea. Plant Pathol. J. 28(4), 433-438.   DOI
39 Kim C. S. Bae H. M. and Cho Y. C.(2001). Control of harmful algal blooms by clay via photochemical reactions. Algae, 16, 67-73.
40 Kim, D. S and Kwak J. W.(1996). Influence of surface properties and -potential ${\zeta}$ of particle on coagulation/flocculation. J. KTSWT, 4, 27-36.
41 Kim S. J.(2000). Removal of red tide organisms: 2. Flocculation of red tide organisms by using loess. J. Kor. Fish. Soc. 33, 455-462.
42 Kim M. C. Yoshinaga I. lrnai I. Nagasaki K. Itakura S. and Ishida Y.(1998). A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) blooms in Hiroshima Bay, Japan. Mar. Ecol. Prog. Ser. 170, 25-32.   DOI
43 Kim P. G. Park M. E. Sung K. Y. Jang Y. N.(2006). A study of removal property of harmful algae blooms by Hwangto and oriental mineral medicines. J. Miner. Soc. Korea, 19(4), 277-289.
44 Kim S. J.(1998). Settling characteristics of natural loess particles in seawater for removal of red tides. J. Ins. Marine Industry, 10, 51-55.
45 Maruyama T. Yamada R. Usui K.Suzuki H and Yoshida T.(1987). Removal of marine redtide planktons with acid treated clay. Nissuishi/Bulletin Japanese Society of Science and Fisheries, 53(10), 1811-1819.   DOI
46 Kim Y. S. Son, H. J. and Jeong, S. Y.(2015). Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. J. of Microbiol. 53(8), 511-517.   DOI
47 Lee H. C. Kim J. H. and Chang Y. H.(2006). Preparation and interface properties of colloidal silica. J. Korean Ind. Eng. Chem., 17, 386-390.
48 Lee M. H. Lee K. W. Park K. K. Jung E. C. Song K. S. and Shin H. S.(2010). A study of adsorption behaviour of humic acid and americium on the kaolinite. J. of the Korean Radioactive Water Socity, 8(2), 107-113.
49 Na G. H. Choi W. J. and Chun Y. Y.(1996). A study on red tide control with clay suspension. J Aquaculture 9, 239-245.
50 Nagasaki, K and Yamaguchi, M.(1998). Effect of temperature on the algicidal activity and the stability of HaV(Heterosigma akashiwo virus). Aquat Microb Ecol. 15, 211-216.   DOI