• 제목/요약/키워드: Methylene blue degradation

검색결과 143건 처리시간 0.027초

질소 도핑된 이산화티타늄의 가시광 광촉매 활성 연구 (Visible Light Induced Photocatalytic Activity of N-doped TiO2)

  • 이서희;이창용
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.298-302
    • /
    • 2018
  • 질소가 도핑된 이산화티타늄의 광촉매 특성을 알아보았다. 질소가 도핑된 이산화티타늄에 대하여 자외선 및 가시광선 분위기에서 메틸렌블루 광촉매 분해를 수행하였다. XPS 분석을 통해 제조한 $TiO_2$에서 질소(N)가 산소(O)와 치환되었음을 확인하였다. UV-Vis DRS 분석 결과 질소가 도핑된 무정형 $TiO_2$ 시료에서는 가시광선을 거의 흡수하지 않고 자외선을 흡수하는 반면 무정형/anatase 혼재 $TiO_2$ 시료의 경우 가시광선 흡수가 상당히 증가하였다. 질소가 도핑된 anatase $TiO_2$ 시료는 자외선 및 가시광선 조사에서 메틸렌블루 광분해 반응이 나타났다. 그러나 가시광선 조사에서 분해율은 자외선 조사의 분해율보다 낮았다. 무정형/anatase 혼재 $TiO_2$ 시료의 경우 자외선과 가시광선 조사에서 anatase $TiO_2$ 시료의 분해율보다 높았다. 이러한 결과는 anatase $TiO_2$ 시료에 비해 3배 정도 큰 무정형/anatase 혼재 $TiO_2$ 시료의 높은 표면적이 질소 도핑된 작은 anatase 입자와 관련이 있음을 보여준다.

ACF/TiO2 복합체의 제조 및 유기 염료에 의한 광활성 (Fabrication of Fe-ACF/TiO2 composites and their photonic activity for organic dye)

  • 장간;맹칙달;고원배;오원춘
    • 분석과학
    • /
    • 제22권3호
    • /
    • pp.254-262
    • /
    • 2009
  • 철 화합물을 처리한 활성탄소섬유(Fe-ACF)를 사용하여 Fe-활성탄소섬유/$TiO_2$ (Fe-ACF/$TiO_2$) 복합체 촉매를 제조하였다. 또한, Fe-ACF/$TiO_2$ 복합체 촉매는 BET, SEM, XRD 와 EDX 기기를 사용하여 특성화하였다. BET 표면적은 각각의 복합체들에 대한 흡착 특성과 관계 있음을 나타내었다. SEM 결과는 ACF의 표면상에 Fe 화합물과 이산화 티탄이 분포해 있음을 나타내었다. XRD 결과는 Fe-ACF/$TiO_2$ 복합체가 철 중간체 화합물과 함께 아나타제 구조를 가지고 있음을 나타내었다. EDX 결과는 Fe-ACF/$TiO_2$ 복합체내에 C, O, Ti와 Fe 피크의 존재를 보였다. 광촉매 분해 효과로부터, 이들 복합체에 의한 유기염료의 분해를 관찰 하였다. 다른 분해 효과는 Fe의 포토-펜톤 반응의 탓으로 여겨진다. 즉 Fe-ACF/$TiO_2$의 복합적인 반응은 MB 분해에 대한 강력한 포토-펜톤 반응을 생성한 것으로 여겨진다.

목재 부후균의 리그닌 분해효소 활성과 염료 화합물의 탈색 (Production of Lignin Degrading Enzymes and Decolorization of Various Dye Compounds by Wood-Rot Fungi)

  • 장태원;전상철;안태석;김규중
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.34-39
    • /
    • 2006
  • 목재부후균은 리그닌 분해효소로 lignin peroxidase (LIP), Mn-peroxidase (MNP) 및 laccase를 생성하는데 균류에 따라 위의 효소중 하나 혹은 둘 이상의 효소를 분비하거나 전혀 생성하지 않는 균도 있다. 본 실험은 이러한 목재 부후균의 효소생성 양상과 몇 종의 염료화합물 탈색과의 상관관계를 조사하고자 하였다. 조사한 23종 36균주 중 MNP 생성균은 30균주였으며 LIP 혹은 laccase 생성균은 각각 11균주와 12균주였다. 또한 같은 종에서도 효소활성은 다양한 양상을 보여 주었다. 리그닌 분해효소 활성과 비교하여 염료 탈색 정도는 세 효소가 모두 분비되는 백색 부후균의 경우 염료 탈색율이 상대적으로 우수하였고 균주에 따라 차이가 있으나 MNP 활성만을 갖는 균주의 경우, poly R-478 polymeric dye 및 anthron-type dye 인 remazol brilliant blue R염료는 효소 활성도와 다소 유연관계를 보였으며 methylene blue, bromophenol blue및 congo red 염료는 위의 효소들과는 직접적인 관련이 없는 것으로 판단되었으며, 오히려 균사의 생장과 비례하여 탈색율을 나타냈다. LIP, MNP 및 laccase 효소활성이 거의 검출되지 않은 갈색 부후균에서는 bromophenol blue를 제외하고는 염료의 탈색이 10%미만 혹은 전혀 탈색이 되지 앓았다.

Preparation and photocatalytic activity of ACF/$TiO_2$ composites by using titanium n-butoxide and acid modified activated carbon fiber

  • Oh, Won-Chun;Kwon, Ho-Joug;Chen, Ming-Liang;Zhang, Feng-Jun;Ko, Weon-Bae
    • 한국결정성장학회지
    • /
    • 제19권3호
    • /
    • pp.144-151
    • /
    • 2009
  • Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using $TiO_2$ coated on various acid modified activated carbon fiber (ACF). The ACFs/$TiO_2$ composites were prepared from titanium n-butoxide (TNB) as titanium precursor and various acid modified ACFs. The prepared samples are heat treated at 973 K. Then the ACF/$TiO_2$ composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). Moreover, photocatalytic degradation of MB by the ACF/$TiO_2$ composites was determined under UV irradiation. The results shows that the photocatalytic activity of ACF/$TiO_2$ composites ($AT1{\sim}AT4$) prepared with TNB and various acid modified ACF was much better than that of ACF/$TiO_2$ composite (AT) prepared with TNB and non-acid modified ACF, and the effects improved with order of sample AT3 > AT4 > AT1 > AT2.

Preparation of C60 Nanowhiskers/WO3 Nanocomposites and Photocatalytic Degradation of Organic Dyes

  • Kim, Keun Hyung;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제50권2호
    • /
    • pp.126-131
    • /
    • 2015
  • $C_{60}$ nanowhiskers were synthesized from $C_{60}$ by liquid-liquid interfacial precipitation (LLIP) using $C_{60}$-saturated toluene and isopropyl alcohol. The $WO_3$ nanoparticles were synthesized by adding $3.8{\times}10^{-4}$ mole amount of ammonium metatungstate hydrate ($H_{26}N_6O_{40}W_{12}{\cdot}H_2O$) to 500 ml of distilled water, and the resulting solution was heated on a hot plate for 4 h. The $C_{60}$ nanowhiskers/$WO_3$ nanocomposites were prepared with $C_{60}$ nanowhiskers and $WO_3$ nanoparticles in an electric furnace at $700^{\circ}C$ in an argon gas atmosphere for 2 h. The $C_{60}$ nanowhiskers/$WO_3$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectroscopy was used to evaluate the performance of the $C_{60}$ nanowhiskers/$WO_3$ nanocomposites as a photocatalyst in the degradation of organic dyes, such as methylene blue (MB) and brilliant green (BG) under ultraviolet light (254 nm).

Preparation of [C60]Fullerene-CoS2 Nanocomposites and Kinetics Study for Photocatalytic Degradation of Organic Dyes

  • Kim, Jae Jin;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제51권1호
    • /
    • pp.49-55
    • /
    • 2016
  • Nanosized cobalt disulfide ($CoS_2$) particles were synthesized with 0.08 M cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) and 0.2 M sodium thiosulfate pentahydrate ($Na_2S_2O_3{\cdot}5H_2O$) dissolved in distilled water under microwave irradiation. $[C_{60}]Fullerene-CoS_2$ nanocomposites were prepared with nanosized $CoS_2$ particles and [$C_{60}$]fullerene as heated by $700^{\circ}C$ for 2 h in an electric furnace. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) identified the heated $[C_{60}]fullerene-CoS_2$ nanocomposites. Heated $[C_{60}]fullerene-CoS_2$ nanocomposites were investigated the activity of photocatalytic degradation as a catalyst in various organic dyes like acid yellow 23, methylene blue, methyl orange, and rhodamine B with ultraviolet light at 254 nm by UV-vis spectrophotometer.

Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution

  • Sajjadi, Saeed;Khataee, Alireza;Soltani, Reza Darvishi Cheshmeh;Bagheri, Nafiseh;Karimi, Afzal;Azar, Amirali Ebadi Fard
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.406-415
    • /
    • 2018
  • Here, as-synthesized $Fe_3O_4$ nanoparticles were incorporated into the zeolitic imidazolate framework (ZIF-8) lattice to activate sodium percarbonate (SPC) for degradation of methylene blue (MB). The reaction rate constant of $Fe_3O_4@ZIF-8/SPC$ process ($0.0632min^{-1}$) at acidic conditions (pH = 3) was more than six times that of the $Fe_3O_4/SPC$ system ($0.009min^{-1}$). Decreasing the solute concentration, along with increasing SPC concentration and $Fe_3O_4@ZIF-8$ nanocomposite (NC) dosage, favored the catalytic degradation of MB. The $Fe_3O_4@ZIF-8$ NC after fifteen consecutive treatment processes showed the excellent stability with a negligible drop in the efficiency of the system (<10%). The reaction pathway was obtained via GC-MS analysis.

Biochemical and Molecular Characterization of Laccases from Wild Mushrooms

  • Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 춘계학술대회 및 임시총회
    • /
    • pp.43-43
    • /
    • 2014
  • White rot fungi have been useful source of enzymes for the degradation of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and synthetic dyes. PAHs are widespread organic compounds present in fossil fuels and are routinely generated by incomplete fuel combustion. PAHs are some of the major toxic pollutants of water and soil environments. Synthetic dyes are major water-pollutants, which are toxic to organisms in water environments and interfere photosynthesis of water plants. Removal of PAHs and synthetic dyes has been of interests in the environmental science especially in the environmental microbiology. Mushrooms are fungal groups that function as primary degraders of wood polyphenolic lignin. The ligninolytic enzymes produced by mushroom, including manganese peroxidase, lignin peroxidase, and laccase, mediate the oxidative degradation of lignin. The catalytic power of these enzymes in the degradation of aromatic ring compounds has been sought for the degradation of various organic compounds. In this project, we have screened 60 wild mushroom strains for their degradation activity against two representative PAHs, naphthalene and anthracene, and five aromatic dyes, including alizarin red S, crystal violet, malachite green, methylene blue, rose bengal. The degradation of PAHs was measured by GC while the decolorization of dyes was measured by both UV spectrophotometer and HPLC. As results, 9 wild mushroom strains showed high activity in degradation of PAHs and textile dyes. We also describe the secretive enzyme activities, the transcription levels, and cloning of target genes. In conjunction with this, activities of degradative enzymes, including laccase, lignin peroxidase, and Mn peroxidase, were measured in the liquid medium in the presence of PAHs and dyes. Our results showed that the laccase activity was directed correlated with the degradation, indicating that the main enzyme acts on PAHs and dyes is the laccase. The laccase activity was further simulated by the addition of $Cu^{2+}$ ion. Detailed studies of the enzyme system should be sought for future applications.

  • PDF

P-25 광촉매의 열처리 온도에 따른 염료감응태양전지의 효율특성 (Efficiency Characteristics of Dye-Sensitized Solar Cells with Heat Treatment Temperature of P-25 Photocatalyst)

  • 박기민;김태영;김정국;조성용
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.649-653
    • /
    • 2010
  • 본 연구에서는 열처리 온도(Pure: non-thermally treated, 450, 650, $850^{\circ}C$)에 따른 P-25 광촉매의 특성 변화를 조사하였으며, 이 광촉매를 이용하여 염료 감응형 태양전지를 제조하고 그 효율 특성을 연구하였다. P-25 광촉매의 열처리 온도에 따른 Methylene blue의 광분해 정도는, Pure와 $450{\sim}650^{\circ}C$에서 소성된 광촉매들의 광분해도는 3시간 이후 약 97~99%로 비슷한 결과를 보였고, $850^{\circ}C$에서 소성된 광촉매는 약 46%로 다른 광촉매에 비해 낮은 값을 보였다. 비열처리(Pure) 광촉매와 450, 650, $850^{\circ}C$에서 열처리한 광촉매를 이용하여 제조한 염료감응형 태양전지의 에너지 변환효율은 각각 6.9, 6.5, 5.8 그리고 5.6%로 각각 나타났다.

PHOTOCATALYTIC ANTIEUNGAL ACTIVITY AGAINST CANDIDA ALBICANS BY $TiO_2$ COATED ACRYLIC RESIN DENTURE BASE

  • Yang Ji-Yeon;Kim Hee-Jung;Chung Chae-Heon
    • 대한치과보철학회지
    • /
    • 제44권3호
    • /
    • pp.284-294
    • /
    • 2006
  • Statement of problem. Proliferation of Candida albicans is primarily within the plaque on the fitting surface of the denture rather than on the inflamed mucosa. Consequently, the treatment of the denture is equally important as treatment of the tissue. Cleansing and disinfection should be efficiently carried-out as the organisms can penetrate into the voids of the acrylic resin and grow in them, from which they can continue to infect and reinfect bearing tissues. Purpose. The purpose of this study was to evaluate the applicability of photocatalytic reaction to eliminate Candida albicans from acrylic resin denture base, and to investigate the anti-fungal effect with various UVA illumination time. Materials and Methods. The specimens were cured by the conventional method following the manufacturer's instruction using thermal polymerized denture base resin (Vertex RS: Dentimex, Netherlands). $TiO_2$ photocatalyst sol(LT), which is able to be coated at normal temperature, was made from the Ti-alkoxide progenitor. The XRD patterns, TEM images and nitrogen absorption ability of the $TiO_2$ photocatalyst sol(LT) were compared with the commercial $TiO_2$ photocatalyst P-25. The experimental specimens were coated with the mixture of the $TiO_2$ photocatalyst sol(LT) and binder material (silane) using dip-coater, and uncoated resin plates were used as the control group. Crystallinity of $TiO_2$ of the specimen was tested by the XRD. Size, shape and chemical compositions were also analyzed using the FE-SEM/ EDS. The angle and methylene blue degradation efsciency were measured for evaluating the photocatalytic activity of the $TiO_2$ film. Finally, the antifungal activity of the specimen was tested. Candida albicans KCTC 7629(1 ml, initial concentration $10^5$ cells/ ml) were applied to the experiment and control group specimens and subsequently two UVA light source with 10W, 353 nm peak emission were illuminated to the specimens from 15cm above. The extracted $2{\mu}l$ of sample was plated on nutrient agar plate ($Bacto^{TM}$ Brain Heart Infusion; BD, USA) with 10 minute intervals for 120 minute, respectively. It was incubated for 24 hours at $37^{\circ}C$ and the colony forming units (CFUs) were then counted. Results. Compared the characteristics of LT photocatalyst with commercial P-25 photocatalyst, LT were shown higher activity than P-25. The LT coated experimental specimen surface had anatase crystal form, less than 20 nm of particle size and wide specific surface area. To evaluate the photocatalytic activity of specimens, methylene blue degradation reaction were used and about 5% of degradation rate were measured after 2 hours. The average contact angle was less than $20^{\circ}$ indicating that the LT photocatalyst had hydrophilicity. In the antifungal activity test for Candida albicans, 0% survival rate were measured within 30 minute after irradiation of UVA light. Conclusion. From the results reported above, it is concluded that the UVA-LT photocatalytic reaction have an antifungal effect on the denture surface Candida albicans, and so that could be applicable to the clinical use as a cleaning method.