Efficiency Characteristics of Dye-Sensitized Solar Cells with Heat Treatment Temperature of P-25 Photocatalyst

P-25 광촉매의 열처리 온도에 따른 염료감응태양전지의 효율특성

  • Park, Ki-Min (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Tae-Young (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Jeong-Guk (Fuel Cycle Process Technology Development Division, Korea Atomic Energy) ;
  • Cho, Sung-Yong (Department of Environmental Engineering, Chonnam National University)
  • 박기민 (전남대학교 환경공학과) ;
  • 김태영 (전남대학교 환경공학과) ;
  • 김정국 (한국원자력연구원 핵주기공정기술개발부) ;
  • 조성용 (전남대학교 환경공학과)
  • Received : 2010.03.02
  • Accepted : 2010.09.01
  • Published : 2010.10.31

Abstract

In this study, the variation of characteristics of P-25 photocatalyst with calcination temperature(Pure: non-thermally treated, 450, 650, $850^{\circ}C$) was studied. The photocatalysts were used as working materials for dye-sensitized solar cells: DSSCs) later on and their photovoltaic characterization was carried out. The photocatalytic degradation of methylene blue using the P-25 photocatalyst with different calcination temperature was almost same expect for $850^{\circ}C$. The solar energy conversion efficiency ($\eta$) of DSSCs prepared by the nanoparticles (photocatalyst) reached 6.9% (for pure), 6.5%(for 450), 5.8%(for 650) and 5.6%(850).

본 연구에서는 열처리 온도(Pure: non-thermally treated, 450, 650, $850^{\circ}C$)에 따른 P-25 광촉매의 특성 변화를 조사하였으며, 이 광촉매를 이용하여 염료 감응형 태양전지를 제조하고 그 효율 특성을 연구하였다. P-25 광촉매의 열처리 온도에 따른 Methylene blue의 광분해 정도는, Pure와 $450{\sim}650^{\circ}C$에서 소성된 광촉매들의 광분해도는 3시간 이후 약 97~99%로 비슷한 결과를 보였고, $850^{\circ}C$에서 소성된 광촉매는 약 46%로 다른 광촉매에 비해 낮은 값을 보였다. 비열처리(Pure) 광촉매와 450, 650, $850^{\circ}C$에서 열처리한 광촉매를 이용하여 제조한 염료감응형 태양전지의 에너지 변환효율은 각각 6.9, 6.5, 5.8 그리고 5.6%로 각각 나타났다.

Keywords

References

  1. Madhusudan Reddy, K., Gopal Reddy, C. V. and Manorama, S. V., "Preparation, Characterization and Spectral Studies on Nanocrystalline Anatase $TiO_2$," J. Solid State Chem., 158, 180-186 (2001). https://doi.org/10.1006/jssc.2001.9090
  2. Teruhisa, O., Koji, S., Kojiro, T. and Michio, M., "Morphology of a $TiO_2$ Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases," J. Cataly., 203, 82-86(2001). https://doi.org/10.1006/jcat.2001.3316
  3. Driessen, M. D. and Grassian, V. H., "Photooxidation of Richloroethylene on Pt/$TiO_2$," J. Phys. Chem., B102, 1418-1423(1998).
  4. Byrne, J. A., Eggins, B. R., Brown, N. M. D., Mckinery, B. and Rouse, M., "Immobilization of $TiO_2$ Powder for the Treatment of Polluted Water," Appl. Catal., B Environ., 17, 25-36(1998). https://doi.org/10.1016/S0926-3373(97)00101-X
  5. Nahnemann, D. W. and Hoffmann, M. R., "Photolysis of Chloroform and Other Organicmolecules in Aqueous $TiO_2$ Suspensions," Environ. Sci. Technol., 25, 494-500(1991). https://doi.org/10.1021/es00015a018
  6. Korea institute of Science and Technology Information., "High Efficiency Nano Solar Cells," (2008).
  7. Michael, G., "Perspectives for Dye-sensitized Nanocrystalline Solar Cells," Prog. Photovolt. Res., 8, 171-185(2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  8. Susan, B., Editor Maryadele, J., O'Neil, Associate Editor Ann Smith, Assistant Editor, Patricia E. Geckelman, Editorial Assistant, "The Merck Index", An Encyclopedia of Chemicals, drugs, and Biologicals, Merck & Co., Inc., USA, 954(1989).
  9. John, A. D., "Lange's Handbook of Chemistry,"Mc Graw-hill. Inc. USA, 1266-1267(1999).