• Title/Summary/Keyword: Methyl blue

Search Result 152, Processing Time 0.023 seconds

White Organic Light-Emitting Diodes with Color Stability

  • Seo, Ji-Hoon;Park, Jung-Sun;Koo, Ja-Ryong;Seo, Bo-Min;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.357-361
    • /
    • 2009
  • The authors have demonstrated white oraganic light-emitting diodes (WOLED) using 1,4-bis[2-(4'-diphenylaminobiphenyl-4-yl)vinyl]benzene as fluorescent blue emitter and iridium(III) bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate as phosphorescent red emitter. The optimized WOLED using red host material as bis(2-methyl-8-quinolinato) -4-phenylphenolate exhibited proper color stability in comparison with the control device using 4,4'-N,N'-dicarbazole-biphenyl as red host. The white device showed a maximum luminance of 21100 $cd/m^2$ at 14 V, luminous efficiency of 9.7 cd/A at 20 $mA/cm^2$, and Commission Internationale de I'Eclairage ($CIE_{x,y}$)coordinates of (0.32, 0.34) at 1000 $cd/m^2$. The devices also exhibited the color shift with ${\Delta}CIE_{x,y}$ coordinates of ${\pm}$ (0.01,0.01) from 100 to 20000 $cd/m^2$.

The Study on the Physicochemical Properties of Fluid under High Pressure (1). Effects of Pressure and Temperature on the Pentamethyl Benzene-Iodine Charge Transfer Complex in n-HexaneⅠ

  • Kim, Jeong-Rim;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.74-79
    • /
    • 1985
  • The stabilities of the charge transfer complexes of pentamethyl benzene with iodine in n-hexane have been investigated by UV-spectrophotometric measurements at 25, 40 and 60$^{\circ}C$ up to 1600 bars. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red-shift at higher pressure, the blue-shift at higher temperature, and the relation between pressure and oscillator strength have been discussed by means of thermodynamic functions. In comparison with the results in the previous studies, the absolute values of ${\Delta}$V at each temperature were increased with the number of methyl groups of polymethyl benzene. However, it can be seen that both ${\Delta}$H and ${\Delta}$S show extreme behaviors in durene near atmospheric pressure but they are negatively increased with the number of methyl groups near 1600 bar. This order of the thermodynamic parameters may be a measure of the relative basicities of polymethyl benzenes toward iodine under each pressure, and these phenomena are explained in terms of a positive inductive effect and a steric hindrance effect of the polymethyl benzene molecule.

Formation of Disinfection By-Products from Blue-green Algae by Chlorination (남조류의 염소처리에 따른 미량의 염소 소독부산물 생성에 관한 연구)

  • Son, Hee-Jong;Jung, Jong-Moon;Yeom, Hoon-Sik;Choi, Jin-Taek;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.1015-1021
    • /
    • 2012
  • Formation of disinfection by-products (DBPs) including trihalomethans (THMs), haloacetic acid (HAAs), haloacetonitriles (HANs) and others from chlorination of algogenic organic matter (AOM) of Microcystis sp., a blue-green algae. AOM of Microcystis sp. exhibited a high potential for DBPs formation. HAAs formation potential was higher than THMs and HANs formation potential. The percentages of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) formation potential were 43.4% and 51.4% in the total HAAs formation potential. In the case of HANs formation potential, percentage of dichloroacetonitrile (DCAN) formation potential was 97.7%. Other DBPs were aldehydes and nitriles such as acetaldehyde, methylene chloride, isobutyronitrile, cyclobutanecarbonitrile, pentanenitrile, benzaldehyde, propanal, 2-methyl, benzyl chloride, (2-chloroethyl)-benzene, benzyl nitrile, 2-probenenitrile and hexanal.

Metabolic engineering for isoprenoids production in Escherichia coli

  • Kim, Seon-Won;Keasling, J.D.
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.70-73
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all isoprenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate(DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoismerase and encoded by dxr. To determine if one of more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains ($DH5{\alpha}$, XL1-Blue, and JM101) that had been engineered to produce lycopene, a kind of isoprenoids. Lycopene production was improved significantly in strains transformed with the dex expression vectors. At arabinose concentrations between 0 and 1.33 mM, cells expressiong both dxs and from $P_{BAD}$ on a midium-copy plasmid produced 1.4 -2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cell expressing both dxs and dxr was lower than in cells expression dxs only. A comparison of the three E. coli strains trasfomed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1-Blue.

  • PDF

Involvement of Nitric Oxide and Prostanoid on Photorelaxation in Pig Renal Artery (UV-light 에 의한 혈관 이완작용에 있어서 nitric oxide와 prostanoid의 관련성)

  • Kim, Joo-Heon;Shim, Cheol-Soo;Jeon, Seok-Cheol
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • The effect of nitric oxide synthase(NOS) inhibita, $N^G$-nitro-L-arginine-methyl ester(L-NAME) and prostanoid synthesis inhibiter, indomethacin on the photorelaxation, when was exposed to the long-wave length UV-light, was examined on the precontraction by the phenylephrine in the isolated pig renal artery. 1. UV-light relaxed both with-endothelium and without-endothelium in the pig renal arterial ring contracted by the phenylephrine. The magnitude of photorelaxation was dependent on the exposure time for UV-light. 2. UV-Iight induced relaxation was inhibited by L-NAME and indomethacin on the precontraction by the phenylephrine in the isolated pig renal artery. 3. UV-Iight induced relaxation was inhibited by methylene blue on the precontraction by the phenylephrine in the isolated pig renal artery. These results suggest that UV-light induced photorelaxation may be due to cGMP involved both nitric oxide and prostanoid on the precontraction by the phenylephrine in the isolated pig renal artery.

Synthesis and characterization of star-shaped imide compounds

  • Jeon, Eunju;Yoon, Tae-Ho
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.19-20
    • /
    • 2012
  • Novel star-shaped imide compounds containing electron-donating triphenylamine and/or electron-withdrawing bis(trifluoromethyl)phenyl side groups were synthesized via a two-step process. First, 3,6-dibromo-benzene-1,2,4,5-tetracarboxylic acid (2B4BA) was reacted with 4-aminophenyl (diphenylamine) (ATPA) or 3,5-bis(trifluoromethyl)aniline (6FA) by imide reaction. Then, Suzuki coupling reaction was carried out on these compounds with 4-(N,N-diphenylamino)-1-phenyl boronic acid (BTPA) or 3,5-bis(trifluoromethyl)phenyl boronic acid (6FBB), resulting in 3,6-bis[4-(diphenylamino)phenyl]-N,N'-bis[4-(diphenylamino) phenyl]-pyromellitimide (TPTPPI), 3,6-bis[3,5-bis(trifluoro methyl) phenyl]-N,N'-bis[3,5-bis(trifluoromethyl) phenyl]-pyro mellitimide (6F6FPI) or 3,6-bis[4-(diphenylamino)phenyl]-N,N'-bis[3,5-bistrifluoromethyl)phenyl]-pyromellitimide (6FTPPI). The imide compounds obtained were characterized by NMR, FT-IR, DSC, TGA, melting point analyzer, EA, and solubility measurements. In addition, their optical and electrical properties were evaluated by fluorescence spectroscopy, UV-vis spectroscopy, and cyclic voltammetry (CV). 6F6FPI exhibited deep blue emission (443 nm), along with high $T_m$ ($382^{\circ}C$) and relatively high $T_g$ ($148^{\circ}C$).

Crystal Structure and Molecular Stereochemistry of Novel Polymeric Cu2(DMP)44(DMSO) as a Platform for Phosphate Diester Binding

  • Rafizadeh, Massoud;Tayebee, Reza;Amani, Vahid;Nasseh, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.594-598
    • /
    • 2005
  • Treatment of a solution of $CuCl_2$ in dimethyl phosphate (DMP) with DMSO under nitrogen atmosphere afforded to a light blue fluorescence powder. Slow evaporation of $H_2O$-DMSO solution of this powder resulted in blue-sky crystals of a new polymeric Cu(II) complex, with a unit cell composed of $Cu_2(DMP)_4$(DMSO), (1). The crystal and molecular structure of the complex acquired crystallographically. Compound (1) crystallizes in the monoclinic space group $P2_1$/n with a = 12.8920(11) $\AA$, b = 13.1966(11) $\AA$, c = 14.7926(13) $\AA$, $\alpha$ = 90$^{\circ}$, $\beta$ = 98.943(2)$^{\circ}$, $\gamma$ = 90$^{\circ}$, V= 2486.1(4) ${\AA}^3$, and Z = 4. A square pyramidal environment for the metal center was established by coordination of oxygen atoms of four bridging DMP ligands in the basal positions and binding a tri-centered oxygen atom of DMSO in the apical disposition of Cu(II). The sixth position was also affected by a weak interaction with the sulfur atom of another DMSO. The phosphorous atom in the bridging DMP was arranged in a deformed tetrahedron with (gg) conformation for methyl esters with $C_{2v}$ symmetry.

Application of hybrid material, modified sericite and pine needle extract, for blue-green algae removal in the lake

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.364-373
    • /
    • 2018
  • The present study assessed the efficient removal of nutrients and Chlorophyll-a (Chl-a) by using methyl esterified sericite (MES) and pine needle extracts (PNE), a low cost and abundant green hybrid material from nature. For this purpose, the optimal conditions were investigated, such as the pH, temperature, MES and PNE ratio, and MES-PNE dose. In addition, a Microcystis aeruginosa control using MES-PNE was also analyzed with various inhibition models. The removal of the nutrient and Chl-a onto MES-PNE was optimized for over 95% removal as follows: 2-2.5 for the MES-PNE ratio, 7-8 pH and a $22-25^{\circ}C$ temperature. In this respect, approximately 1.52-2.20 g/L of MES-PNE was required to remove each 1 g of dry weight/L of Chl-a. Total phosphorus (TP) has a greater influence on the increase in Chl-a than total nitrogen (TN) according to the correlation between TN, TP and Chl-a. Moreover, the Luong model was the best model for fitting the biodegradation kinetics data from Chl-a on MES-PNE from lake water. The novel hybrid material MES-PNE was very effective at removing TN, TP and Chl-a from the lake and can be applied in the field.

Enhanced photocatalytic performance of magnesium-lithium co-doped BiVO4 and its degradation of methylene blue

  • Nayoung Kim;Hyeonjin Kim;Jiyu Lee ;Seog-Young Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.132-138
    • /
    • 2023
  • Doped and undoped-BiVO4 samples with different elements (Li, Mg) and amounts were synthesized with a hydrothermal method. The synthesized samples were characterized using various techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffusion reflectance spectroscopy (UV-Vis DRS), and photoluminescence (PL) spectroscopy. Photocatalytic activity of the samples was evaluated by measuring the degradation of methyl blue (MB) under visible light irradiation. The results indicated that the incorporation of Mg and Li into BiVO4 caused lattice distortion, the presence of surface hydroxyl groups, a narrower band gap, and a reduced recombination ratio of photo-induced electron-hole pairs. Notably, the photocatalytic activity of Mg5%-Li5% co-doped BiVO4 sample exhibited a significant improvement compared to that of undoped BiVO4 sample.

Changes of Root System in Rice (Oryza sativa L.) Plant Under Salt- and Drought- Stressed Agar Medium Conditions. (Agar 배지를 이용한 건조 및 염 처리에 대한 벼 식물체의 근계 변화)

  • 강동진;석정용일;김길웅;이인중
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.396-399
    • /
    • 2004
  • This study was investigated the changes of root length, tissue structure of root tip, and dry matter production of a Dongjinbyeo (DJ) cultivar subjected to 0.4 % agar medium with various concentration of NaCl (salt stress)- and polyethylene glycol 6000 (PEG, drought stress). Root length and dry weight of DJ plant were declined along the high concentration of PEG and NaCl in rice plants. To elucidate the changes of tissue structure in root tip to PEG- and NaCl-treatments, we examined the microscopic observation of root tip in NaCl- and PEG-treated rice plants using Toluidine blue O. By Toluidine blue O staining, methyl-lignin accumulation was found in the epidermis and outer cortex of the elongation zone at an early stage of PEG treatment, whereas was found only the outer cortex of the elongation zone of NaCl-treated root tip. The epidermis of NaCl-treated root tip became soften instead of methyl-lignin accumulation. TR ratio was increased along the high concentration in PEG- and NaCl-treated rice plant as a result of inhibited root elongation under PEG- and NaCl-treatment. From these morphological changes in root stimulated by drought and salt stress, we suggest that agar medium is useful to identify tolerant variety in germination stage under stressful environments.